
UNCLASSIFIED

A Comprehensive Context for
Mobile-Code Deployment

Final Project Report for UC Irvine

Michael Franz

Grant Agreement No. N00014-01-1-0854
1st May 2001 – 30th September 2004

UNIVERSITY OF CALIFORNIA , IRVINE

Notice

Effort sponsored by the the Office of Naval Research under agreement No. N00014-
01-1-0854. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Office of Naval Research (ONR) or the U.S.
Government.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
2005

2. REPORT TYPE
Final report

3. DATES COVERED (From - To)
01 May 2001 – 30 Sept 2004

4. TITLE AND SUBTITLE
A Comprehensive Context for Mobile-Code Deployment

5a. CONTRACT NUMBER

5b. GRANT NUMBER
N00014-01-1-0854
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Franz, Michael

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

University of California
Bren School of Information &
Computer Science
Irvine, CA 92697-7600

23071

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Office of Naval Research ONR
Ballston Centre Tower One
800 North Quincy Street 11. SPONSOR/MONITOR’S REPORT

Arlington, VA 22217-5660 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approve for Public Release, distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Given the acknowledged importance of mobile code, current distribution models are
surprisingly primitive. For example, Java’s model assumes that the constituent parts that
make up a mobile program will all be downloaded to a single location, and then verified,
linked, possibly dynamically compiled, and finally executed at that very location.
 This research project made three important contributions: First, it demonstrated that it
can be beneficial to perform verification, dynamic compilation, and execution at different
physical locations. A prototype was built that performs code verification and just-in-time
compilation at a “code generating router” inside the network itself. If the end-points of
the network are resource-limited devices such as wirelessly-connected personal digital
assistants (PDA’s), off-loading dynamic code generation to the stationary network can result
in substantial benefits. As a second contribution, the project identified a novel attack on
mobile code systems, based on the complexity of the code verification algorithm itself. The
third contribution is a new mobile-code verification algorithm that not only lacks this
vulnerability, but that is also more efficient.

15. SUBJECT TERMS
mobile code distribution, dynamic code generation, code verification, verification complexity

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Michael Franz

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U SAR 69

19b. TELEPHONE NUMBER (include area
code)

(949) 824-7427
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Abstract

Given the acknowledged importance of mobile code, current mobile-
code distribution models are surprisingly primitive. For example, Java’s
model assumes that the constituent parts that make up a mobile program will
all be downloaded to a single location, and then verified, linked, possibly
dynamically compiled, and finally executed at that very location.

This research project has made three important contributions: First,
it demonstrated that it can be beneficial to perform verification, dynamic
compilation, and execution at different physical locations. A prototype was
built that performs code verification and just-in-time compilation at a “code
generating router” inside the network itself. If the end-points of the network
are resource-limited devices such as wirelessly-connected personal digital
assistants (PDAs), off-loading dynamic code generation to the stationary
network can result in substantial benefits.

As a second contribution, the project identified a novel attack on mobile
code systems, based on the complexity of the code verification algorithm
itself. The third contribution is a new mobile-code verification algorithm that
not only lacks this vulnerability, but that is also more efficient.

iv

Contents

Title Page i

Notice ii

Report Documentation Page iii

Abstract iv

Contents v

List Of Figures vii

Acknowledgments viii

Summary 1

1 Introduction 1

2 Code Generating Routers 3
2.1 Replicated Compilation . 4
2.2 Network-Centric Compilation 6
2.3 Research Prototype . 9
2.4 Related Work . 12
2.5 Section Summary . 13

3 Complexity-Based Attacks on Mobile Code 14
3.1 Mobile Code Verification . 16
3.2 The Current State of Java Security 17
3.3 Implementation-Based Attacks 18
3.4 Class Loader-Based Attacks . 20
3.5 Complexity-Based Attacks . 20
3.6 Complexity of Verification . 20
3.7 Exploiting the Worst-Case Behavior 23
3.8 Weaknesses in the Code Transport Format 24
3.9 Attacking the Compilation Pipeline 25
3.10 Countermeasures—And Why They Do Not Work 26
3.11 A New Security Paradigm . 27
3.12 Section Summary . 29

v

4 SSA-Based Java Bytecode Verification 29
4.1 Verification in Static Single Assignment Form 30

4.1.1 JVMLS . 31
4.1.2 Java Bytecode Verification 31
4.1.3 Abstractions . 32
4.1.4 Algorithm . 33

4.2 Benchmarks . 35
4.3 Related Work . 37
4.4 Section Summary . 38

5 Conclusion 39

Final Report by Co-PI Brett Fleisch
(UC Riverside) 40

Sandboxing Mobile Code from Outside the OS
(Brett Fleisch, UC Riverside) 43

BRSS: A Binary Rewriting Security System for Mobile Code
(Brett Fleisch, UC Riverside) 44

List of Written Publications
(UC Irvine) 54

Professional Personnel Associated With The Project
(UC Irvine) 58

Presentations at Meetings, Conferences, Seminars, etc.
(UC Irvine) 60

References Cited 63

vi

List of Figures

1 Traditional Mobile Code Execution vs. Network-based Compilation 3
2 Execution ofNativeMobile Code on a Workstation 5
3 Execution of Mobile Code on a Workstation 6
4 Network-Enabled Execution on a Resource-Constrained Device . 7
5 Prelocated Mobile Code on a Resource-Constrained Device 8
6 Communication in the Network-Centric Approach 8
7 Benchmark Results for Prototype Implementation 9
8 Execution Time of Loop Benchmark 12
9 The Standard Verification Algorithm 18
10 High-Level Structure of a Bytecode-Execution Framework 19
11 Verification of Java Byte-Code Through Iterative Data-Flow Analysis 21
12 Worst Case Verification Example 22
13 Worst-Case Dataflow Scenario 23
14 JAR Compression Effects . 24
15 Instructions in JVMLS . 31
16 Example Program and Abstraction for Stack and Variable States . 33
17 Test Characteristics . 35
18 Total Runtime . 36

vii

Acknowledgments

The author would like to thank all team members for their research contributions
to this project, and would like to recognize especially Deepak Chandra, Andreas
Gal, Vivek Haldar, Christian Probst, Vasanth Venkatachalam, and Lei Wang.

viii

Summary

Given the acknowledged importance of mobile code, current mobile-code distri-
bution models are surprisingly primitive. For example, Java’s model assumes that
the constituent parts that make up a mobile program will all be downloaded to
a single location, and then verified, linked, possibly dynamically compiled, and
finally executed at that very location.

This research project has made three important contributions: First, it demon-
strated that it can be beneficial to perform verification, dynamic compilation, and
execution at different physical locations. A prototype was built that performs
code verification and just-in-time compilation at a “code generating router” inside
the network itself. If the end-points of the network are resource-limited devices
such as wirelessly-connected personal digital assistants (PDAs) or high-end mobile
phones, off-loading dynamic code generation to the stationary network can result
in substantial benefits.

As a second contribution, the project identified a novel attack on mobile
code systems, based on the run-time complexity inherent in the code verification
algorithm. The new attack is not based on any error in the implementation but
exploits the underlying worst-case behavior of a published algorithm. Open-source
implementations are particularly susceptible to this kind of algorithmic attack.

The third contribution is a new verification algorithm for Java that verifies
bytecode via Static Single Assignment (SSA) form construction. The resulting
SSA representation can immediately be used for optimization and code generation.
The prototype implementation requires less time to transform Java bytecode into
SSA form and verify it than it takes Sun’s original Java verifier to merely confirm
the validity of the bytecode, with the added benefit that SSA is available “for free”
to later compilation stages.

1 Introduction

Mobile code is an important enabling technology with a huge potential, but the
underlying software distribution models are surprisingly primitive. While major
research investments have been made into dynamic compilation and related efforts
to improve therun-time performanceof programs distributed in this manner, much
less has been invested in understanding and improving thestages of the mobile-
code pipelinethat bring the code to this point in the first place.

The predominant model by far, which for example underlies the distribution
of Java “applets” over the Internet, identifies dynamically linkable parts of mobile
programs by URL strings. The model further assumes that the constituent parts

1

that make up a mobile program will be downloaded to a single location, and
then verified, linked, possibly dynamically compiled, and finally executed at that
very location. This model is unnecessarily simplistic, as it precludes many useful
alternative deployment strategies, particularly in the realm ofnetwork-connected
embedded devices.

The performance of the code distribution pipeline is particularly critical
for such resource-limited embedded devices (e.g., wirelessly-connected personal
digital assistants or high-end mobile phones). In order for such a device to run
Java code, it needs to contain either a Java interpreter or a just-in-time compiler.
Both options are costly: an interpreter needs to run at a high clock frequency to
overcome the overhead of interpretation, while a just-in-time compiler consumes
extra memory and processor resources for the compilation step.

Code Generating Routers:Our project has found a particularly interesting
solution to this fundamental problem by integrating the just-in-time compiler into
the network itself, in what we call a “code-generating router”. The code-generating
router translates mobile code into the native instruction set of the handheld device
while it is passing through. For example, in a mobile telephony system, such a
component could be co-located with the base station. A full description of this
approach follows in Section 2.

Complexity-Based Attacks on Mobile Code:A second focus point of our
research concerned itself with code verification. We predict that we will soon
witness denial-of-service attacks on mobile-code systems that will be based
on algorithmic complexity. For example, the worst-case performance of Java
Bytecode Verification rises quadratically with program length. By sending a legal,
but difficult-to-verify program to a server virtual machine, we can keep that server
occupied for an inordinate amount of time, effectively making it unavailable for
useful work. In our experiments, a 4kByte JAR file containing Java code with
worst-case verification complexity required more than 15 minutes of verification
time on a high-end workstation. Our result puts into question the premise of open-
source software, since it is knowledge of the underlying algorithm that is exploited
in the attack, rather than a particular implementation defect. This is described in
more detail in Section 3.

SSA-Based Java Bytecode Verification:Java bytecode verification has other
problems. If the verification task determines that the bytecode is indeed safe, then
this code is forwarded in its original form (as received from the code producer)
to the JVM’s execution component, which may be an interpreter or a just-in-time
compiler. Beyond the result denoting whether or not verification was successful, all
other information computed by the verifier is discarded and is not passed onwards.
In many cases, this results in a duplication of work when a just-in-time compiler
subsequently performs a very similar data-flow analysis all over again. In the

2

course of this project, we found an alternative verification mechanism that avoids
such duplication of work. It is described in Section 4.

2 Code Generating Routers

With the ongoing expansion of wireless coverage, formerly autonomous devices
such as Personal Digital Assistants (PDAs) and mobile sensors (MSs) have
evolved into nodes of large distributed systems. Their increased connectivity and
flexibility has unleashed an enormous potential for the execution of mobile code.
Astonishingly, at the same time there has been no change to the role of thenetwork:
The execution model of mobile code is the same on small devices as it is on
powerful workstations. Current approaches for PDAs and MSs rely onnode-local
just-in-time compilation or, even worse, on pure interpretation by virtual machines.
In a resource-constrained setting, these approaches often produce unsatisfactory
results.

We propose a paradigm shift toward anetwork-centricmobile code execution
model. Instead of the traditionaldevice-centricapproach that embeds a just-
in-time compiler component into every mobile device, we perform mobile code
optimization and compilation effortwithin the networking infrastructure. In this
approach, the networking infrastructure serves as a transparent proxy. It intercepts
mobile code sent from a server to a mobile device and forwards optimized native
code for immediate execution instead (Figure 1).

GET
bytecode

bytecode

mobile deviceweb server

native code
compilercompiler

proxy

web server

GET
bytecode

bytecode

mobile device

compilercompiler

Figure 1: Traditional Mobile Code Execution vs. Network-based Compilation

This architecture turns the execution model from a decentralized, device

3

oriented one, into a centralized, network oriented one, thereby saving resources on
the mobile device in terms of processor time, memory and battery consumption.
This is achieved without changing the current client-server architecture for mobile
code deployment. This is a particularly important property since it provides for
backward compatibility with existing mobile code solutions.

In the following, we describe the current scenario of mobile code execution
(Section 2.1). This scenario is dominated byreplicated compilation, where each
and every terminal node is able to compile code. Network-centric compilation is
a better approach (Section 2.2). The prototype implementation of the presented
framework is described in Section 2.3. Section 2.4 describes related work of
server based mobile code compilation. We conclude this part of our report with
a summary and an outlook to future work (Section 2.5).

2.1 Replicated Compilation

In the traditional mobile code setting, a workstation-class client requests an
application from a remote server, i.e. web-server, and the network delivers the
mobile code without performing any modification. Once the mobile code has been
delivered to the workstation it is either interpreted by a virtual machine (VM) or
is translated to native machine code by a just-in-time compiler and then executed
directly by the host CPU. Pure interpretation using a virtual machine is in many
cases too slow even on a powerful workstation-class computer. In the mobile
device scenario, interpreted execution is especially harmful since it requires high
clock frequencies, which induce a higher energy consumption.

Mobile code compiled just-in-time into native code executes near the speed of
code specifically compiled for the target CPU. However, the compilation process
itself is resource-intensive in terms of memory consumption and CPU time. All
components needed for the mobile code execution reside on each target machine,
including the actual virtual machine, the just-in-time compiler and the runtime
libraries. In a network of such machines, each machine is independently capable
and responsible for compiling and optimizing mobile code during execution. This
can be summarized asreplicated compilationat every terminal node.

On an average workstation-class computer the resource overhead of replicated
compilation is irrelevant. For example, the Java 2 Platform requires roughly 32MB
of RAM for the execution of a simple program while a modern workstation is
usually equipped with well over 256MB of RAM. CPU time is also usually no issue
since workstation-class machines are often equipped with fast microprocessors
clocked at Gigahertz speeds.

Small mobile devices such as PDAs, mobile sensors, and mobile phones,
however, are equipped with far fewer resources in terms of CPU power and

4

memory. Therefore, a more elaborated approach is needed to allow for the efficient
execution of mobile code on such platforms. This is even more urgent for mobile
sensors, where the available resources are even more constrained.

compilercompiler

source
code native

code

workstation

loaderloaderlinkerlinker

native
libraries

mobile
code

web server

Figure 2: Execution ofNativeMobile Code on a Workstation

A naive solution is to storenative instead ofmobile code on the server
(Figure 2). Instead of transporting the portable mobile code to the target device,
the mobile code is translated into machine-specific native code for the targeted
architecture before it is put on the server. On the mobile device’s side, the virtual
machine and the just-in-time compiler are replaced by the standard linker and
loader of the device’s operating system. Additionally, the device’s runtime libraries
need to be replaced with native libraries. While this approach allows to reduce the
runtime overhead by removing the virtual machine and the just-in-time compiler,
the libraries still need to be present. This approach has been pursued by Microsoft
before the advent of mobile code formats in their ActiveX framework.

One drawback of this approach is that the server has to store a version of each
program for every target architecture that possibly could request a program from it.
Another disadvantage lies in the nature of mobile code vs. machine code. Mobile
code is transported in a type-safe manner, which allows to verify easily that certain
security policies are not violated by the program. Performing the same verification
on native machine code is much harder. Therefore, native code usually is secured
by code signing when transported over unsecure networks. While type-safety is
a code-inherentproperty, code signing relies on the safety of secret keys and the
strength of signing algorithms.

Additionally, in this solution the overall role of the network with respect to
the delivered code is still exactly the same as before. Itenablescommunication
between mobile devices and servers, butremains inactive. As can be seen in
Figure 3, the networking infrastructure merely serves as a transportation medium.

Taking into account the readily available computing power of many network

5

compilercompiler web server

workstation

VMVMsource
code

mobile
code

workstation

JITJITVMVM
libraries

Figure 3: Execution of Mobile Code on a Workstation

nodes, we propose an alternative approach by enabling the networking infrastruc-
ture to compile mobile code, store compilation results and to deliver native code
directly to the target devices.

2.2 Network-Centric Compilation

While recently there has been a lot of work onactive networks, e.g. [74, 77], these
approaches mostly think in terms of reprogrammable networking infrastructure,
and mobile agents that perform this reprogramming. We extend this notion by
modeling the network as anenabling partof the execution model for mobile code.

To off-load parts of the mobile code execution framework onto the network
infrastructure, the compilation of mobile code into native code is delegated to a
code generating router(CGR), which is also responsible for linking, and loading
the native code into the memory of the target machine. Just as in the previous
replicated compilation scenario, the mobile device requests an application from a
remote server. The networking infrastructure, now playing anactiverole compared
to its passive behavior in the previous section, intercepts this request at a router
(Figure 4).

The active router then passes on the request to the remote server, initiating the
transmission of the mobile code, but redirects the response stream to its internal
compilation server. From the remote server’s perspective this process is entirely
transparent. This is an important property of our architecture as it allows to
integrate our model with existing web services.

The compilation server inside the code generating router translates the mobile
code to machine-code which is specifically geared toward the target device which
issued the initial request. In contrast to a pure native-code approach such as
ActiveX, native code is only exchanged over trusted communication links between
the router and the target device (using, for example, encrypted wireless LAN).

6

compilercompiler

source
code

mobile
code

libraries

native
code

compilercompiler

mobile device

loaderloaderlinkerlinker

web server

CGR

Figure 4: Network-Enabled Execution of Mobile Code on a Resource-Constrained
Device

Remote servers still store and serve programs in verifiable mobile code format.
When the target device requests a program from a remote host, the local networking
infrastructure translates it on-the-fly to native machine code suitable for the target
CPU. To eliminate the risks of injection of non-verifiable native code from foreign
sources, the target device accepts native code input only from the local networking
infrastructure. Therefore, the code generating router would usually be placed
behind a firewall, securing the network between it and the ultimate host.

By relieving the target device from code generation and instead having the
networking infrastructure taking over this task, we have effectively transformed
the currentdevice-centricmobile code execution framework into anetwork-centric
model which performs the resource intensive compilation process where CPU
time, memory, and battery power are aplenty and power consumption is much less
critical than in the case of mobile devices.

Having the network take over functionality otherwise provided by code
consumers or producers, the networking infrastructure automatically gains insight
into the code executing on its nodes. Thus, i.e., the network is able to identify
already compiled applications and parts and can reuse cached results instead
of recompiling them. By storing theintermediate representationinstead of the
generated code, this benefit even holds if the same pieces of code are required
for different architectures. This can be compared to web proxies, which store the
sourceof web pages instead of the actual rendered output for a certain browser.

The network also relieves its client terminal nodes from storing libraries. Since
the compilation to native code happens at routers in the network, neither the
libraries nor the compilers need to be stored on the devices that actually execute

7

compilercompiler

source
code

mobile
code

libraries

native
code

mobile device

loaderloader

compilercompiler

linkerlinker

loaderloader

web server

CGR

Figure 5: Network-Enabled Execution of Prelocated Mobile Code on a Resource-
Constrained Device

the code. Thus, these devices are independent of version changes in either. Instead,
the network delivers for each mobile-code request a native program compiled with
the current version of all libraries.

mobile
code

native code
(application, libs)

mobile device

compilercompiler

linkerlinker

browser

pluginplugin

GET
bytecode

GET
bytecode

bytecode

loaderloader

native code
(application, libs,
runtime system)

web server

CGR

libraries

runtime
system

prelocated
bytestream

prelocated bytestream,
address

Figure 6: Communication in the Network-Centric Approach

Figure 5 shows how the resident footprint on the mobile device can be further
reduced by delegating thelinking process to the networking infrastructure as
well. By doing so, the networking infrastructure gains complete control over the
placement of code in the memory of each participating node. In order to perform
the linking and even parts of theloadingprocess, all it needs to know is the base
address to which the resulting code shall be loaded. The active network generates

8

benchmark #classes bytecode specialized opt. exec. time [s]
[bytes] code [bytes] [bytes] Jeode CGR

HelloWorld 53 64,827 80,376 30,959 1.64 0.12
J2ME Test 53 65,878 82,096 37,287 57.15 3.03
method test 56 68,640 89,192 41,527 53.74 58.60

loop 53 64,623 80,456 33,307 1.88 0.09

Figure 7: Benchmark Results for Prototype Implementation

code, links it with the runtime system and performspartial loading, which we also
call pre-relocation orprelocation. The resulting code image is sent to the target
device, where the rest of the loading process is performed.

If a mobile device roams within the active network, it can be handed over
between code generating routers. After the mobile device announces its new
location, the nearest CGR will contact the previous CGR to download all relevant
state information [26]. If the mobile devices leaves the active network entirely,
it will not be able to download any more code from the CGR, but the already
compiled code continues to work as expected.

2.3 Research Prototype

In this section we report about our prototype implementation of the networking-
infrastructure based mobile code architecture. One of the main design goals of
our prototype system was to re-use existing components and technologies where
appropriate.

Due to its maturity and availability, we choose to use the Java language
[35] and virtual machine [48] to be at the core of our implementation instead
of designing our own mobile code representation. Besides the Java reference
implementation offered by Sun Microsystems, a number of commercial and
open source implementations of the Java virtual machine exist. Looking at the
history and development of these projects, the implementation of the Java virtual
machine itself is a fairly manageable task compared to the re-implementation or
customization of the Java libraries which are mandatory to execute any program
written in Java. To make matters worse, the Java API is frequently updated and
changed by Sun Microsystems, making it very difficult for third party developers
to keep their own Java libraries up to date. To prevent this problem, one of
the fundamental design decisions for our prototype implementation was to stay
compatible to the reference implementation of the Java API offered by Sun
Microsystems.

As the target device we are using a Sharp Zaurus PDA with a 206 MHz Intel

9

StrongARM CPU and 16MB of RAM and 16MB of ROM. The functionality of
a code generating router is performed by a standard workstation PC running our
ProxyVM framework [76]. Our prototype implementation seamlessly integrates
with the web browser that comes pre-installed on the Sharp Zaurus. All requests
from the web browser to fetch Java bytecode (in form of Java class files) from
remote web servers are intercepted by the network. The code generating router
then reads the Java code from the web server, translates it to native code suitable
for the Intel StrongARM CPU and relays the executable binary code back to the
PDA.

The code generating router is not only responsible for verifying and compiling
the Java mobile code to native code. After each Java class file has been compiled
to native code, the networking infrastructure also connects the native code pieces
into an executable program (linking) as well as adjusts all address references to the
final memory location (RAM) of the code once it has been transfered to the PDA
(prelocation). The final step ofloading the native code into the memory of the
PDA is also performed under the control of the network. The PDA receives specific
instructions what code to write to what memory location. Thus, only minimal logic
is required on the target device.

All that’s necessary on the PDA to enable the execution of Java applets inside
the web browser is a small browser plugin that follows the code loading instructions
issued by the network and then transfers control to the newly loaded code. In
contrast to existing solutions, no library code is stored on the PDA. Instead, only
actually referenced parts of the library are transfered to the PDA. This is especially
important, since the standard libraries come with a huge number of methods that
are not callable at runtime.

The standard Java libraries are offered by Sun in a number of different flavors,
including an edition for small embedded devices. Existing Java solutions for the
Sharp Zaurus use a minimal Java API subset to save storage space on the PDA. In
our architecture, the Java libraries are stored in the code generating router instead,
enabling the execution of programs using the full Java API on small embedded
devices1.

Figure 7 and Figure 8 give results for compilation and execution with our
prototype implementation. The benchmarks areHelloWorld , which is a treat
in other programming languages, but in the Java world means compiling almost
the complete Java API. The second benchmark,J2ME Test , is part of a small
J2ME test suite [42]. It performs 100 iterations of arithmetic computations.JGF
Method is based on the method invocation part of the JavaGrande benchmark [10].

1As a reference, the compressed full Java API (JDK 1.4.1) is approximately 25MB in size. This
is more than four times the total amount of available RAM on the PDA.

10

It repeatedly executes calls to methods that are in either the same or another class
as the calling method. Finally, theloop benchmark executes a loop a number
of times. The results in Figure 7 have been measured with an upper bound of
10, 000, 000.

All runtime measurements have been performed on aSharp Zaurus SL-5500,
using the native code generated by our framework and the original bytecode
executed by the Jeode virtual machine [40]. Figure 7 gives two kinds of
information for every benchmark — (1) the different code sizes, and (2) execution
times for the mobile and the specialized code. The sizes are given for the mobile
code (including the API classes) and the the generated, target specialized code, on
the one hand for a normal compiler run and on the other hand for an optimizing run.
Size is of importance for code that is going to be transported over the network, since
smaller numbers obviously imply shorter transmission times. The code generated
without optimizations averages approximately126% of the size of the mobile code.
With enabled optimizations the code size shrinks to55%, allowing for a much
faster code deployment. The small footprint is mainly due to applying aggressive
optimizations, including Rapid Type Analysis [7, 75] which allows the compiler to
eliminate all methods that are never going to be called at run time.

The second number for each benchmark is the actual execution time of the
code. While the numbers forHelloWorldandloop are merely given for reasons of
completeness, they share an interesting property that we are going to come back to
shortly — since the computation performed in this benchmarks is negligible, the
dramatic overhead of Jeode must actually stem from the initialization of the run-
time system. Thus, beside the short transmission times resulting from the reduced
code size of our target specialized code, the resulting application in our solution is
going to start up much faster than a bytecode-based alternative. This is going to be
even improved in the future by ordering the methods in the resulting byte-stream
in the order that they might be called at execution time.

The benchmark execution times show the superiority of our solution in terms
of the fast startup and the aggressive optimizations performed by our compiler.
The only exception is the JavaGrande based benchmark which is5% faster when
executed in the Jeode environment than when the binary generated by our CGR is
executed. Inspecting the generated code reveals that there are two main reasons for
this — we conservatively ensure that classes are properly initialized, thus enforcing
too many checks at run-time. Additionally, access to class and instance variables
is still sub-optimal in our generated code. Since this benchmark in our setting
invokes in the order of8 ∗ 108 methods and counts in instance variables, these
numbers are going to improve with an improved field access in the next generation
of the infrastructure.

Figure 8 shows the execution time (y-axis) for theloop benchmark with

11

0

5

10

15

20

25

30

1 10 10
0

10
00

10
00

0

1E
+0

5

1E
+0

6

1E
+0

7

1E
+0

8

1E
+0

9

CGR
Jeode

Figure 8: Execution Time of Loop Benchmark

different arguments (x-axis) measured with Jeode and our CGR. As can be seen,
the difference between the two curves stays more or less constant, indicating that
the code generated by our solution has a much shorter startup time, thus allowing
for a faster availability of downloaded applications.

2.4 Related Work

Besides the Standard Edition [69] of the Java 2 Platform [35, 48], which is not
directly suited for small embedded devices, a number of Java implementations
exist that are directed at similar devices as our proposed architecture.

Sun Microsystems itself has published at least two Java virtual machines that
are specifically designed for small embedded devices and PDAs. The Spotless
System [11] is a small virtual machine for the Palm organizer using a minimal
Java API subset. It contains no just-in-time compiler, but speed was no design
goal. Similar to the Spotless System is the K Virtual Machine [52], also from Sun.
While “K” stands for kilobyte, in a useful configuration the KVM needs closer to
one megabyte of RAM than merely kilobytes. Like the Spotless System, KVM has
no just-in-time compiler and is rather slow. Both systems have in common that
they require all libraries to reside on the target system.

More recently, Sun has announced a project called KJIT which aims at
producing a just-in-time compiler for the KVM system. A similar just-in-time
compilation solution for small embedded systems is already offered by Insignia.
The Jeode virtual machine [40] uses profiling and on-demand code generation to
speed up the execution of Java code. The Sharp Zaurus PDA ships with a version of
the Jeode virtual machine for the StrongARM CPU. While Jeode is much smaller

12

than the Standard Edition of Java, it still occupies very significant amounts of ROM
and RAM compared with the few kilobytes of code our architecture requires on the
PDA.

Even smaller Java implementations such as JavaCard [73] succeed in further
reducing the virtual machine overhead by dropping essential virtual machine
features like class loading, reflection, floating point, long integer, etc. Our approach
differs from these subset virtual machines by trying to reconcile reduced resource
consumption on the mobile device and execution performance. By using Rapid
Type Analysis, we are able to execute Java programs written for the standard Java
API 1.4 on a device which has not even enough memory to hold just the API
bytecode itself in compressed form, not to mention the actual program or the virtual
machine code.

Similar to our architecture, JCOD [23] is using a network connection to offload
the compilation of Java mobile code to a compilation server. Our approach differs
from JCOD as we try to shift the responsibility for mobile code compilation and
preparation for execution more aggressively into the networking infrastructure. In
our architecture, all that remains of the Java virtual machine on the target device
is a small plugin stub. Compilation, linking, prelocation, and loading are all
performed by the code generating router in a manner entirely transparent to the
mobile device. Finally, in contrast to JCOD, we compile all code to native code
and never interpret any portions of the program on the target device and thus do
not require any interpreter components on the target.

As our prototype implementation, JPure [8] translates mobile code in its
entirety into machine code before execution. While being originally designed
for small embedded controllers, the JPure project endeavored to scale Java down
to devices typical to that domain. The main reasons were the inefficient code
generation performed by the GNU Java Compiler (GCJ) and the non-availability
of small Java API subsets at that time. In contrast to JPure, our prototype
implementation is able to mimic the dynamic class loading semantics of Java and
thus does not require to partially rewrite the Java libraries. This is a practical benefit
as we do not have to track the frequent changes Sun Microsystems is doing on the
Java API.

2.5 Section Summary

Bringing mobile code technology to small embedded devices has been an ongoing
struggle since the inception of Java. With the advent of handheld devices such
as PDAs, mobile sensors, and next generation mobile phones, the necessity of
such a move has been further emphasized. We achieve off-loading computational
intensive mobile code compilation and optimization tasks to the networking

13

infrastructure. A central role in this novel architecture is an active networking
component, a code generating router, which transparently intercepts mobile code
requests and compiles code on-the-fly to a format directly (natively) executable
by the mobile code requester. Already in this early stage of development, our
prototype most of the time outperforms or at least equals existing stand-alone Java
solutions for the chosen Sharp Zaurus platform in both major criteria: memory
consumption and execution performance.

In contrast to advancements at the operating system and application pro-
gramming level, just-in-time compilation (or code compilation in general) is
currently still mostly considered a local task. Our architecture and the prototype
implementation thereof have demonstrated that replicated compilation is not the
favorable architectural choice in an ubiquitous computing environment. Already
today, networking components such as routers and switches contain some of the
most advanced and highest performance CPUs in existence. We believe that
this trend will continue and will ultimately allow the networking infrastructure
to contribute significantly to long power autonomy of portable digital assistants or
networked portable devices in general.

Our plans for future work can roughly be divided into three areas. First, we
want to further improve our mobile code compilation and optimization framework
to overcome certain existing performance bottlenecks we pointed out in the
previous sections. Our second major goal is to make more efficient use of
information gained from past compilation runs in the CGR. Specifically, we plan
to cache intermediate results of the compilation and optimization phase to speed
up future compilation requests of the same mobile code fragment. Finally, we are
exploring how profiling information gathered by the target device can be fed back
to the CGR to perform runtime code optimization. Our current approach is based
solely on static code analysis and we expect to be able to further increase execution
performance by taking dynamic profile information into account.

3 Complexity-Based Attacks on Mobile Code

Safe mobile code is a major accomplishment. The two leading standards, the Java
Virtual Machine [48] and the “Dot-Net” Common Language Runtime [50], provide
target-machine independence in a code distribution format that can be verified
by the code recipient prior to execution. Safety in such systems is based on a
combination of (1) code verification ahead of execution and (2) runtime monitoring
and resource control during execution. The research emphasis in this area so far
has been on thecorrectnessof the safety mechanism and its implementation, and
numerous vulnerabilities have been discovered and removed.

14

In this section, we contend that mere correctness of the safety enforcement
mechanism is not sufficient to defend the host computer against mobile-code based
attacks. Instead, there needs to be a dual focus on the (worst-case-)performanceof
the verifier and just-in-time compiler. Otherwise, as we will show, formally correct
safe-mobile-code systems are vulnerable to a new class of denial-of-service (DoS)
attack that exploits thecomplexity characteristicsof the underlying verification
and code-generation algorithms to render the system unavailable for useful work.
Since the attack is located ahead of the point at which run-time resource control
sets in, and since it attacks the very mechanism upon which safety is founded,
conventional defenses cannot fully quell this threat.

For example, the Java virtual machine bytecode verification algorithm exhibits
quadratic worst-case execution complexity. We have been able to construct
relatively small mobile programs in the Java JAR archive format that require hours
of verification on high-end workstations. The programs in question are perfectly
legal Java virtual machine code, perform no malicious action on the host, and will
eventually be verified as being safe. However, the process of verification itself is
so costly as to effectively constitute a denial-of-service attack.

Current mobile code systems treat verification and just-in-time code generation
as atomic operations. As far as we know, there is not a single existing Java Virtual
Machine in which verification or just-in-time code generation can be interrupted by
the user—other than by killing the whole Virtual Machine. And for the increasingly
importantserver-side virtual machines, human intervention is not even an option.

The problem with the kind of attack that we describe in this section is that
the programs in question are not “illegal” in the sense that traditional safety
mechanisms would defend against. In fact, there might be completely reasonable
valid and usefulprograms with verification complexities similar to our attack
programs. Hence, one cannot simply deploy a traditional monitor that would
abort verification when a certain time limit is exceeded—unless one wants to also
accept the random rejection of potentially important non-malicious programs. The
risk of rejecting certain useful programs might be particularly unacceptable for an
unattended server virtual machine.

Hence, the problem is similar to that of defending against low-intensity viruses
or worms that cause damage while “flying under the radar” without ever tipping off
an intrusion-detection system. Unlike such a low-intensity virus or worm, however,
the attack in our case consumes all of the cycles of the host.

Unfortunately, attacks based on algorithmic complexity affect not just the
verifier, but the complete code path on the client. For example, an adversary that
knows the target virtual machine’s register allocation algorithm might be able to
maliciously craft a valid mobile code program containing a particularly difficult to
solve graph coloring puzzle.

15

An interesting point to note is that “open source” systems might be more
vulnerable to this kind of attack than systems that provide “security by obscurity”.
Advocates of “open source” development have long argued that their systems are
safer because the code is audited by hundreds of people and implementation defects
are hence more easily spotted and removed. Our attack, however, does not depend
on any implementation defect, but only on the underlyingalgorithm, which is
publicly exposed in open-source development. Hence, the open-source process
simultaneously increases the vulnerability to attacks such as ours while making it
impossible to quickly react to an exposed vulnerability by changing the underlying
algorithm.

The remainder of this part of our report is structured as follows: The next
section gives a short introduction to mobile code verification, followed by a
description of the current state of Java security (Section 3.2). This chapter also
discusses successful earlier attacks and the related countermeasures that have been
taken. Section 3.5 presents a whole class of new attacks based on complexity
and defines the problem by identifying vulnerabilities in mobile-code execution
frameworks that have so far been overlooked. Here, we contend that a paradigm
shift is necessary towards making mobile code systems aware of complexity-based
attacks and hardening them against those attacks. In Section 3.11, we argue that
the solution may very well lie in choosing algorithms based on theirworst-case,
rather thanaverage-casebehavior. Currently, virtual machines and just-in-time
compilers are fine tuned for high performance in the average case, with the hope
that the worst case will rarely occur—we assert that this approach is simply too
dangerous. We end this section with a brief summary (Section 3.12).

3.1 Mobile Code Verification

Staticmobile code verification was introduced by Gosling and Yellin [78, 48] as an
alternative to thedynamicchecking of type safety properties at runtime through
dynamic execution monitors [15]. Using dynamic runtime checks can cause a
significant runtime overhead at execution time. The basic ingredient of every Java
virtual machine bytecode verifier is an abstract interpreter for Java Virtual Machine
Language instructions. The stacks and virtual registers of this abstract interpreter
storetypes, rather thanvalues. Similarily, the instructions of the abstract interpreter
operate at the type-level only and do not perform any actual calculations.

Leroy [47] lists the minimal conditions for bytecode to be accepted by the
verifier:

• Type correctness. Bytecode instructions are typed and must receive argu-
ments of appropriate types.

16

• No stack overflow or underflow. A method must never pop a value from the
empty stack or push a value onto the largest stack specified for that method.

• Code containment. The program counter must always stay within the code
limits of the currently active method and must always point to the beginning
of a valid instruction.

• Local variable initialization. No variable may be loaded that has not been
initialized first.

• Object initialization. Whenever an object of a classC is created, one of the
class’ constructors must be called.

Except for code containment, all of these conditions require tracking the types
of values as they are pushed onto and popped from the virtual Java stack and written
to and read from local variables. The Java specification provides an outline of a
data-flow algorithm that can be used for this purpose. A simplified description of
this algorithm is shown in Figure 9.

All Java Virtual Machine implementations that we are aware of, including
Sun’s own CVM [71] and HotSpot virtual machines [41], use slight variations
of this algorithm to perform bytecode verification. The verifier algorithm is
performed separately for every method in a Java program. For each method, it
iterates over all instructions of that method until no more operand type changes
are observed. For each instructioni, the verifier checks whether the abstract data
associated withi has changed. If so, it checks whether the current abstract local
variable and stack content allow the execution ofi and computes the new local
variable and stack content. Finally, this new abstract state is propagated to all
successors ofi.

3.2 The Current State of Java Security

The Java Virtual Machine [48] and its security architecture [78, 49] have been
under intense scrutiny since their release. Over the years, several errors on different
levels have been unveiled. Figure 10 gives an overview of the structure of the Java
bytecode-execution framework and references to reported flaws and shortcomings
in either the implementation or the architecture. The whole security concept of
Java collapses at the moment at which justoneof the components is compromised.
Below, we will give a brief overview over some of these attacks. It is noteworthy
that all of these attacks are based onimplementationerrors rather thanconceptual
flaws. In contrast, the attack presented in this section, is not as its enabling property
is the byte-code verification algorithm itself and not a specific implementation
thereof.

17

1: todo← true
2: while todo = true do
3: todo← false
4: for all i in all instructions of a methoddo
5: if i was changedthen
6: todo← true
7: check whether stack and local variable types

match definition ofi
8: calculate new state afteri
9: for all s in all successor instructions ofi do

10: if current state fors 6= new state derived fromi then
11: assume state afteri as new entry state fors
12: marks as changed
13: end if
14: end for
15: end if
16: end for
17: end while

Figure 9: The Standard Verification Algorithm Found in Sun Microsystem’s JVM
Implementations.

Beside the work described in this section, there has also been intensive
research on how to actually secure the transport and the execution of mobile-code
programs. Approaches include enhanced transport formats [2, 53, 16], host based
intrusion-detection systems [3, 22], auditing systems [64], stack inspection [25],
and extensions to the actual execution unit [6, 19, 37]. All of these approaches
either try to rescue what already has been lost—the system is no longer dependable
due to probable implementation faults—or try to replace the current verifier scheme
with mechanisms that are hopefully easier to implement and prove correct.

3.3 Implementation-Based Attacks

In attacking a mobile-code execution framework, the verifier is one of the obvious
targets. The verifier has the obligation to prohibit any execution of unsafe code,
where unsafe is defined with respect to the criteria defined in the respective
framework. Due to its importance, verification is executed as a highly prioritized
task that can not be interrupted by the user without shutting down the whole virtual
machine. There are two possible scenarios for an attack on the bytecode verifier.

18

Gal, Probst, Franz, 2003

Freund, Mitchell, 1999
Sohr, 1999, 2001
Microsoft, 2000

LSDRG, 2002
Dean, Felten, Balfanz, Wallach, 2003

Govindavajhala, Appel, 2003
Hardware

Virtual Machine

Verifier

Java BytecodeNecula, 1997
Colby, Lee et al., 2000
Amme, Dalton, von Ronne, Franz, 2001

Anderson, 1980
Czajkowsk, von Eicken, 1998
Debar, Dacier, Wespi, 1999
Back, Hsieh, Lepreau, 2000
Fournet, Gordon, 2002
Hawblitzel, von Eicken, 2002
Soman, Krintz, Vigna, 2003

Figure 10: High-Level Structure of a Bytecode-Execution Framework. The call-
outs on the right-hand side refer to successful attacks and implementation flaws
found in the JVM, the call-outs on the left-hand side to attempts to enhance the
security and reliability of the virtual machine.

Obviously, for attacking a virtual machine it is of importance to bring a hostile
applet through the verification process. Since the verifier has the obligation to
prohibit exactly this, this task requires profound inside knowledge and usually
profits from implementation errors.

Sohr [62] presents an example for the exploit of faulty implementations. In
this attack, the verifieroverlookscertain code sequences that are passed on for
executionwithout having been verified. This, in turn, allows to construct methods
that use the unverified code to return objects of one type that by the type system are
believed to be of another type. In later work, Sohr [63] reports on a similar problem
in a version of Microsoft’s bytecode verifier [51], based on incorrect handling of
values of local variables in the verifier.

Freund et al. [29] exploit another flaw in a certain implementation of the
verifier, which is based on the handling of subroutines and uninitialized objects in
the verifier. By creating several uninitialized objects of a class and only initializing
one of them, the virtual machine can be made to invoke methods on uninitialized
objects. This fault is enabled by incorrect handling of initialization of newly
created objects in the verifier.

Hopwood [39] presents another exploit demonstrating that certain versions of
the verifier could be made to load classes with absolute class names instead of
relative ones. Thus, a class could first be uploaded to a client without verification
and afterwards be dynamically loaded in the virtual machine. However, since it
would be loaded from the local host, there would not be any verification. This trust
in local files is applied to avoid repeated re-verification of locally installed classes

19

such as the pre-installed system classes of the APIs of mobile-code execution
frameworks.

The actual hardware running the virtual machine can also be attacked, e.g. by
raising the probability of a bit error [36]. In contrast to the exploits described
so far, this is an area of attack that can not be handled by means of the virtual
machine itself, but by taking hardware measures to minimize the probability of an
uncorrectable memory error.

3.4 Class Loader-Based Attacks

The first attack that included the Java Virtual Machine itself was thePrinceton
Class Loader Attack[21]. It exploited a combination of flaws—an erroneous
implementation of the verifier and the class loading mechanism that implements
dynamic loading of classes in the Java virtual machine. The faulty implementation
allowed the attacker to overwrite system classes with malicious code. The loaded
classes were actually verified as valid while they should have been rejected, and
the methods where later on called in place of the overwritten methods. The whole
concept of dynamic class loading is one of the fundamental weak spots in the Java
security architecture [20].

3.5 Complexity-Based Attacks

The techniques presented in the previous section illustrate some of the documented
approaches of attacking a Java Virtual Machine. We consider the complexity-
based verifier attack to be the severest of these attacks, because it is enabled by
the fundamental design properties of the Java bytecode execution framework, and
not by errors in its implementation. The code sequences used in this exploit are
legal andcorrectmobile code programs and as such not rejectable by the verifier.
While Microsoft’s .NET platform addresses some of the shortcomings that allow
such complexity-based attacks to occur, it still uses fundamentally very similar
verification algorithms and is very likely susceptible to similar kind of attacks.

3.6 Complexity of Verification

Regarding the complexity of verification, the analysis of straight-line code is in-
expensive, since the abstract interpreter only propagates type information through
the instructions and computes the abstract stack state after each instruction.

The runtime of such a data-flow analysis is significantly increased if the code
contains jumps, exception handlers, or subroutines, which introduce forks and joins
in the control-flow graph. When separate control flows are merged together, an

20

return

fconst 2; fstore 1

iconst 0; ifeq L11

3

goto L2

L2:

L1:

5

6

8

iconst 0; istore 1 I

F

I

Figure 11: Verification of Java Byte-Code Through Iterative Data-Flow Analysis:
The verifier traverses the method from the first instruction to the last. While
conditional branch instructions such asifeq are either taken or not-taken by the
virtual machine, the abstract interpreter considers both cases at the same time. In
this example, the local variable is set to a float in one of the branches, and to an
integer in the other. At the merge point (instruction 8), the type of the variable
becomes>, because the type of the local variable depends on whether the branch
was taken or not. Any attempts by the program to read local variables of type
> would be rejected by the verifier. The example code shown here contains no
backward branches, and hence the analysis can be completed in a single iteration.
If the taken and not-taken code blocks had been locatedbeforethe ifeq instruction
(backward branch), the abstract interpreter would have had to iterate over the code
a second time to determine the type of the local variable in the merge point.

instruction’s predecessors may have different abstract stack or variable types. After
merging the state information of the two incoming control flows, the data-flow
analysis has to be repeated for all instructions which are reachable from this point
in the control flow of the method. For simplicity, the existing Java verifier repeats
the entire data-flow analysis for every instruction of a method until there are no
more changes.

For average Java programs, the verifier algorithm quickly reaches a fixed point
after only a few iterations. For straight-line code or code that contains only forward
branches, the verification algorithm terminates already after a single iteration
(Figure 11). It is obvious that—in theory—the Java verifier could need up ton
iterations over the method, withn being the number of instructions in the method.
Since for each iteration the verifier might have to visit all instructions, the overall
complexity is at leastO(n2).

Such quadratic runtime behavior does not only exist in theory. In fact, simple
Java programs can be constructed that expose the worst case scenario in practice.
Figure 12 shows a very simple Java program that does nothing but store an integer
into a local variable and jump backwards through the code until it finally returns.

21

1 2 3 4

L2:

L3:

I

I

I

I

I

I

I

I

1

3

4

5

10

iconst 0; ifeq L3

return

goto L0

iconst 0; istore 1

goto L2

iconst 0; ifeq L2

goto L1

iconst 0; ifeq L1

goto L0

L0:

L1:

I

I

7

8

11

13 I

I

I

I

I I

II

I I

II

I

I

I

I

I

Iteration

Figure 12: Java Bytecode Program that Takesn iIerations to Verify Using Sun’s
Standard DFA Verifier Approach: The entry state for each basic block depends on
the successor basic block. The type of the first local variable is displayed for each
iteration of the DFA. It is initially assumed to be of unknown type and is discovered
to be an integer (I) during successive iterations. Shaded boxes indicate a change in
the current iteration, framed boxes will be visited in the next iteration.

Studying the verifier algorithm reveals that newly computed type information
is forwarded immediately to instructions that come syntacticallyafter the current
instruction. To instructions that come syntacticallybeforethe current instruction,
the new abstractions will only be forwarded in the next iteration of the DFA. This
property is given by the order in which the algorithm iterates over the instructions
in each method. Once an instruction has been visited for a particular iteration, it
will not be visited again, even if new information about the operand types of that
instruction is computed. Thus, if we manage to orderN instructions in such a way
that each depends on the completion of the verification of thesuccessorinstruction,
we effectively force the verifier to repeat the data-flow analysisN times. For
the example in Figure 12, the verifier is forced to perform an iteration for every
backwards jump.

The simplistic approach of the traditional Java bytecode algorithm to iterate
over the bytecode until a fixed point is reached simplifies the generation of
attacks like the one shown in Figure 12, but any other iteration order would also

22

 0

 5

 10

 15

 20

 25

 30

 35

 0 10000 20000 30000 40000 50000 60000

tim
e

to
 v

er
ify

 m
et

ho
d

(s
)

method size (bytes)

N=3000

worst case data flow with empty basic blocks
worst case data flow

Figure 13: Verification Time for Verifying a Single Method Containing a Worst-
Case Data-Flow Scenario: Thex-axis indicates the length of the method bytecode
in bytes, which is proportional to the number of basic blocksN used to construct
the code. The arrows indicate for comparison purposes the code size for path length
N = 3000.

exhibit a particular (possibly different) worst-case behavior for which a malicious
program could be constructed. For any given iteration order for the dataflow
analysis, a worst-case ordering problem can be provided that will exhibit quadratic
complexity. We intend to work together with makers of existing virtual machines
and just-in-time compilers, helping them to identify the worst cases for their
specific platform and harden it against this type of attack.

3.7 Exploiting the Worst-Case Behavior

We have measured the verification time for two malicious programs designed to
exhibit the worst-case performance of the Java verifier using the Sun Microsystems
Java 2 HotSpot Client VM [31].

Figure 13 shows the verification time for a single method containing bytecode
with an increasing maximum data-flow path of lengthN . This time includes only
the time it takes the verifier to prove safety. The code is never actually executed
or compiled to executable code. The first curve shows the verification time for a
worst-case path length problem with empty basic blocks. The second curve in the

23

 0

 10000

 20000

 30000

 40000

 50000

 60000

 520 540 560 580 600 620 640 660 680 700 720
 0

 1000

 2000

 3000

 4000

 5000

m
et

ho
d

si
ze

 (
by

te
s)

ve
rif

ic
at

io
n

tim
e

(m
s)

JAR archive size (bytes)

verification time
compression

Figure 14: Compression of Constructed Code Examples Using the Standard JAR
Archive Format: The code is extremely well compressible as it repeats identical
code patterns. While the verification times increases by over factor 5000, the JAR
file merely grows by less than 200 bytes.

graph shows the maximum flow path problem with some additional code added to
each basic block, which further slows down the verifier. Both curves clearly show
quadratic growth.

All measurements were taken on a 2.53 GHz Pentium 4 and the Sun HotSpot
VM 1.41. The maximum verification time we observed on this machinefor a
single methodwas approximately 40 seconds. Since the size of method code in
Java is limited, this time can not be increased. However, to achieve even longer
verification times, an attacker could hide more than just one of these methods in
the code. Just including 20 methods instead of one would already increase the
verification time to approximately 15 minutes on the test machine we used.

3.8 Weaknesses in the Code Transport Format

The standard JAR archive format used by Java can be used to drastically reduce
the apparent size of the malicious code. The code patterns used in the presented
scenarios lend themselves for compression due to their very regular structure.
Figure 14 indicates the compressed size for different problem lengthsN . These
code fragments can be compressed very well using the standard JAR algorithm,

24

because each block consists at the bytecode level of exactly the same instructions.
While the verification times increases by over factor 5000, the JAR file merely
grows by less than 200 bytes. The JAR archive format thus represents another
example of a well-meant algorithm with appropriate average-case performance,
which however exhibits very unexpected worst-case behavior.

We have used the two algorithmic shortcomings described here to construct
a malicious applet [30] that disables the Java VM of web browsers for several
minutes. The applet is 10kb in size and indistinguishable from regular applet code,
because in the end it is a still legal and correct Java program.

Short of disabling Java applets, the user cannot prevent or interrupt the loading
of this applet. In fact, existing browsers do not even allow the user to interrupt
the verification because the browser implementor never considered the verification
time to be costly enough. Some browsers, including some versions of the
Microsoft Internet Explorer, allow the verifier to continue the verification silently
and continue to hog the CPU in the background even if the user leaves a website
containing an applet that takes an excessive amount of time to verify.

3.9 Attacking the Compilation Pipeline

Denial-of-service attacks are not limited to the bytecode verification phase, which
is executed early in a bytecode execution framework. Any code transformation
algorithm applied to mobile code during its path from a portable bytecode format
to natively executable machine code is vulnerable at its point of worst-case
complexity. This applies in particular to compiler optimization algorithms, which
are traditionally chosen for speed in the average case but not for worst-case
performance, and some of which use heuristics to solve problems like graph
coloring and instruction scheduling that are known to be known to be NP-
complete [14, 38].

An example for such an attackable optimization algorithm is register allocation.
Register allocation is an important component of any just-in-time compiler that
strives to achieve good code quality. The classic register-allocating algorithm is
structured after Chaitin’s graph coloring allocator [14, 13]. Many improvements
and variants have been proposed [5, 9, 34, 45], but most of this research was
focused on improving the average-case performance. Poletto et al. showed that
register allocation using graph-coloring has a quadratic worst-case complexity for
certain pathological cases [56] and proposed a linear-scan algorithm for register
allocation. This algorithm is not guaranteed to find the optimal register allocation
for any given problem, but has a linear worst-case performance. To truly harden
the virtual machine against complexity-based denial-of-service attacks, however,

25

this principle of trading off some code quality in return for linear time complexity
has to be extended to the entire code processing pipeline.

3.10 Countermeasures—And Why They Do Not Work

In contrast to security flaws previously discovered in the Java virtual machine [12],
the enabling property for complexity-based attacks on the verifier is aninherent
property of the algorithm used and not merely somefaulty codethat could be
exchanged.

Rewriting the verifier algorithm to iterate over the code in some other order,
or the introduction of a work list algorithm, would not significantly improve the
situation. Each of these algorithms would still expose quadratic runtime behavior
for some worst case scenarios.

However, a number of mitigating factors exist. First, current Java virtual
machines limit the code size per method to 65,536 bytes. On high-end desktop
systems this limits the maximum verification time we were able to achieve using
a single method to approximately 40s. This (probably accidental) ceiling prevents
the construction of worst case scenarios with near-infinite verification time.

Further shortening the maximum method length of Java methods is not an
option, since long Java methods are not uncommon. Some compilers emitting Java
bytecode generate long methods close to the limit defined in the Java specification.
This includes some XML transformation tools and parser generators. It would be
not surprising if Sun decided to remove the current code size limitation in future
versions of the Java Virtual Machine.

It seems unlikely that one could establish a clear set of rules to detect this
class of malicious programs. Just rejecting a program because it takes more than a
certain number of iterations to verify would be arbitrary. On the other hand, trying
to detect patterns such as the ones described in this section would not eliminate the
problem—more complex and less obvious examples can be easily constructed. It
would also get us back to thepattern matchingapproach used in virus detection
tools, something that bytecode verification was supposed to free us from.

The impact of the complexity-based attacked just described can be increased by
shipping a large number of malicious methods to the verifier. While this increases
verification time by only a linear factor, in conjunction with compressed archives
(JAR), verification times in the magnitude of minutes and hours are achievable as
shown in Figure 14.

Alternatively, adding resource monitoring to the verification process could be
used to counter this attack. However, bytecode verification is deeply embedded
into the Java virtual machine. Introducing the possibility to abort a running
verification from the outside would require invasive changes to Java virtual

26

machine implementations. Similar to all other previously discussed approaches,
resource monitoring introduces arbitrary abort conditions for the verifier and might
prevent an important and desirable Java applet or agent to run just because it takes
longer than expected to verify the code.

Instead of performing the expensive DFA on the code consumer side, it has
been proposed to supply the code consumer with the fixed point of the DFA.
The consumer then only has to check whether the supplied fixed point indeed
satisfies the data-flow equations, which can be done in linear time. In the case
of the K Virtual Machine [72] (KVM) this effect is achieved by annotating the
bytecode with stack maps for every point reached by a branch or exception. This
annotation can be understood as a very specific case of the more generic proof
carrying code approach [54], where a proof generator performs the computationally
intensive generation of proofs that are transmitted in form of certificates to a proof
checker. The proof checker in turn is able to verify the validity of the code using
a certificate in linear time. It is unclear whether Sun will adopt the mechanisms
found in the KVM into the general purpose Java virtual machines since adding
such annotations would break backward compatibility. Even then, however, the
rest of the compilation pipeline would still be vulnerable.

3.11 A New Security Paradigm

As already pointed out, we contend that the only chance to counter attacks that are
based on the complexity of certain parts of mobile code execution frameworks is
a new security paradigm. Instead of targeting only the safety of certain properties
of incoming code, the new paradigm must also take into account the complexity of
the whole code path on the client, from verification up to execution.

We are currently investigating possible approaches to harden the Java bytecode
verifier against complexity-based attacks. The rationale of embedding a verifier
into the Java virtual machine wasto ensure that no unsafe program is ever executed
by the virtual machine. As pointed out above, the worst-case behavior of the data-
flow analysis used for verification allows to construct a denial-of-service attack.
This vulnerability demonstrates the need for not onlycorrect but alsoefficient
algorithms when dealing with mobile code. With future software applications
moving to Grid- and service-based architectures, in which computations are sent to
hosts for execution, these efficient algorithms are going to be essential for system
reliability in the near future.

One of our main observation is that with respect to worst-case-based attacks,
open source initiatives actually worsen the situation. While in the general case the
open-source statement “attack points are easily spotted if thousands of developers
around the globe inspect the code” is certainly true, it does not hold with respect to

27

worst-case behavior, which is due to algorithmic properties. Open source reveals
the algorithm, making the design of an attack possible. The main insight is that
bugscan be fixed easily, butalgorithmsare difficult to replace.

As we have shown previously, the code compression format used by Java lends
itself to conceal from the user the true size of transported programs. Compression
algorithms can also be exploited in many other ways. Clasen used a missing range
check in the zlib decompression algorithm to construct PNG images that crash the
browser because the decompression algorithm tries to allocate unreasonably large
amounts of memory [59]. While we suspect that similar vulnerabilities exist in the
JAR format used by Java, this has apparently not yet been studied.

We are currently constructing an ”algorithmic testbed” Java Virtual Machine
that can be configured with different variants of critical algorithms. We are also
developing a tool to automatically generate Java virtual machine class files that
present particular hard to solve algorithmic puzzles. This tool is used in bench-
marking existing Java virtual machines, highlighting their potential vulnerabilities,
and aiding the removal of such vulnerabilities.

Our aim is to harden the existing Java-based information infrastructure already
deployed around the world against such complexity-based attacks. Although no
such attacks have yet been reported, they could be very costly in scenarios in which
computations are sent to remote servers in the form of ”agents”. We intend to
collaborate with the makers of existing virtual machines, making them aware of
vulnerabilities and helping them eradicate them.

The scope of this investigation needs to be quite broad: For many code opti-
mizations, well known heuristics exist to speed up their average case performance.
However, little to no emphasis has been placed on the worst-case behavior of
these algorithms in the context of being a potential security risk. In particular,
iterative analyses such as escape analysis, register coalescing, live range splitting,
instruction scheduling, and register allocation through graph coloring can have a
very poor worst-case performance. Existing just-in-time compiler implementations
must be analyzed to identify their weaknesses, and also to provide a framework of
code-optimization algorithms with well understood worst-case behaviors.

Our attack exploits the worst-case behavior of one part of the compilation
pipeline, the data-flow based verification algorithm. As mentioned above, restruc-
turing this data-flow algorithm will not remove its fundamental property of scaling
quadratically for some inputs. In order to inhibit this kind of attacks, one needs to
hardeneachstep in the pipeline.

For the verifier, we have developed such a hardened algorithm. After
performing an initial type check using a superficial type system, it converts the Java
bytecode to Static Single Assignment form (SSA) [61, 1], and only then checks
the consistency of type flows using the whole Java type system to verify type

28

safety [32]. While this algorithm has a higheraverage-casecost than the standard
Java verification algorithm, it has a much betterworst-casebehavior. Namely, all
phases beside the SSA construction can be performed in linear time. Many higher-
end just-in-time compilers for Java generate SSA anyway at later stages of dynamic
code generation. While SSA construction is the main cost in our algorithm, these
frameworks can get verification at anincrementalcost by using our verifier and
reusing the constructed SSA. Currently, they perform the standard Java verification
beforestarting the actual compilation.

3.12 Section Summary

Future software-application architectures are moving to Grid- and service-based
architectures, in which computations are sent to hosts for execution. Soon,
these service-based execution frameworks will be omni-present, making the actual
network-based execution mechanism invisible to the user. In these architectures,
efficient algorithms for each step in the chain fromreceiving mobile codeto
compiling it to native codeand executing itwill be needed to protect against
complexity-based attacks. The threat of these subtle denial-of-service attacks has
been neglected, apparently because it does not occur in daily average-case use of
mobile code. In the case of an unsupervised server at the heart of a service-based
framework, however, having the framework verifying, analyzing, compiling, and
executing many mobile-code programs in parallel will make each and every phase
in the framework vulnerable to complexity-based attacks.

We therefore advocate a new security paradigm based on a complexity-
hardened infrastructure. With the currently widespread mobile code execution
frameworks in place, there is no quick fix to this problem. Instead, we will need to
rethink the architecture of those systems—while current systems place verification
as a hurdle for incoming code and after that use fine tuned algorithms that have been
selected for their average case behavior, we will need to construct systems where
each step has a provableworst-casebehavior. Until these systems are in place,
open source code development actually worsens the situation. Instead, security by
obscurity actually works.

4 SSA-Based Java Bytecode Verification

Mobile programs can be malicious. A host that receives such mobile programs
from an untrusted party or via an untrusted network connection will want a
guarantee that the mobile code is not about to cause any damage. To this end, the
Java Virtual Machine (JVM) pioneered the concept ofcode verification, by which

29

a receiving host examines each arriving mobile program to rule out potentially
malicious behavior even before starting execution. This analysis is necessary since
the locations of temporary variables in the Java virtual machine are not statically
typed. If verification is successful, then theoriginal bytecode is forwarded to
the JVM’s execution component, which may be an interpreter or a just-in-time
compiler. Specifically, beyond the result denoting whether or not verification was
successful, all other information computed by the verifier is discarded and is not
passed onwards. In many cases, this results in a duplication of work when a just-
in-time compiler subsequently performs a very similar data-flow analysis all over
again.

In this section, we give a brief overview of an alternative verification mech-
anism that avoids such duplication of work. Instead of verifying Java Virtual
Machine Language (JVML) bytecode directly, we annotate it in such a way that
the flow of values between instructions becomes explicit rather than going through
the operand stack and then transform the annotated bytecode into Static Single
Assignment (SSA) form [18].

Verifying programs in SSA significantly reduces the number of points in the
program that have to be type-checked, because only producers and consumers of
values are verified. Inter-adjacent transitions of a value through stack and registers
are no longer verified explicitly. This integrated approach is more efficient than
traditional bytecode verification but still as safe as strict verification, as overall
program correctness can be induced once the data flow from each definition to all
associated uses is known to be type-safe.

Our benchmarks indicate that the aggregate time required for transforming
JVML into SSA and verifying the program in this representation is still less than the
time needed for performing the standard verification algorithm directly on JVML.
Our approach imposes no overhead for methods that will be interpreted without
just-in-time compilation, because SSA-based verification is still overall faster than
the traditional verifier.

The remainder of this part of our report is organized as follows: Section 4.1
gives a brief overview of the traditional Java bytecode verifier and introduces SSA-
based verification. Section 4.2 compares the performance of our method to that
of Sun’s standard verifier. Section 4.3 discusses related work and Section 4.4
concludes and points to future work.

4.1 Verification in Static Single Assignment Form

This section introduces a subset of JVML, briefly describes traditional Java
bytecode verification, and discusses the abstraction used in our approach as well as
our novel verification method.

30

instruction ::= core|dataflow

core ::= iconst n | lconst l | iadd | ladd | ifeq L | return

dataflow ::= pop |dup |dup 2 | istore x | iload x | lstore x |
lload x

Figure 15: Instructions in JVMLS . The Argumentsn, l, x, andL Must Fulfill the
Conditions−1 ≤ n ≤ 5, l ∈ {0, 1}, x, L ∈ N.

4.1.1 JVMLS

Figure 15 shows the grammar for JVMLS , a subset of JVML which we use here for
illustration purposes. We split the instruction set incore instructions anddata-flow
instructions. Core instructions operate on values stored on the operand stack, while
data-flow instructions only facilitate the flow of values between core instructions
by manipulating the state of the operand stack and exchanging values between
operand stack and variables.

Values are produced by core instructions and can be consumed by other core
instructions. During the lifetime of a value it can reside on the operand stack or in
variables and in multiple locations at the same time. Data-flow instructions neither
produce nor consume values, they merely transport values between stack locations
and variables.2

4.1.2 Java Bytecode Verification

JVML instructions can read and store intermediate values in two locations: the
operand stack and local variables. These locations are ad-hoc polymorphic in that
the same stack location or local variable can hold values of different types during
program execution. Verification ensures that these locations are used consistently
and intermediate values are always read back with the same types that they were
originally written as.

Verification also ensures control-flow safety, but this is a comparatively trivial
task. Conversely, verifying that the data flow iswell-typedis rather complex. The
Java virtual machine bytecode verifier [48, 78] uses iterative data-flow analysis and
an abstract interpreter for JVML instructions. Unlike in the Java virtual machine,
the stack cells and local variables of the abstract interpreter storetypes, rather than

2Even though it consumes a value, thepop instruction is a data-flow instruction, since it merely
manipulates the stack such that the topmost value can no longer be used.

31

values. From the perspective of the verifier, Java virtual machine instructions are
operations that execute on types.

JVML verification works at the method level. With a co-inductive argument it
follows that if every method is verifiable, the whole program is verifiable, too. In
the rest of this report, we use program and method interchangeably.

The central responsibility of the Java bytecode verifier is to check that stack
locations and local variables are used in a type-safe manner. This is the case if the
definitions and uses of values have compatible types. To ensure this, the verifier
algorithm has to determine the types of all stack locations and variables for each
instruction.

4.1.3 Abstractions

In JVML, there is no obvious link between the definition of a value and its uses.
However, even if definition-use chains were available for each value in a JVML
program, it would still be impossible to verify a Java program in a single pass by
comparing the type of each definition with its uses. The reason for this becomes
more obvious if we consider how we categorized the instructions of JVMLS . Only
coreinstructions define and use values.Data-flowinstructions merely facilitate the
flow of values between core instructions. For Core instructions the expected types
of any consumed operands and the types of any produced values are always known
statically. In contrast, data-flow instructions are polymorphic. In general, it is not
possible to determine the type of the value produced by a data-flow instruction
without knowing the type of its operands. The result type of adup instruction, for
example, depends on the type of the value on top of the stack.

While local variable access instructions such asiload x suggest stronger
static typing, this works for scalar types only. In the Java virtual machine,
object references are written and read from local variables usingastore x and
aload x, and data-flow analysis is still necessary to determine the precise type of
the variables accessed.

The rationale of our approach is to replace the stack and local variables by a
register file, and to redefine the dynamic semantics of instructions to actually work
on these registers. This replacement allows us to transform the stack based code
into SSA and to perform type checking only between the definitions of values and
their actual uses. We abstract each instruction in a program to a tuple consisting
of the depth of the stack before that instruction is executed, a mapping from stack
cells and local variables to the instructions that define them, the set of stack cells
and local variables the instruction reads and writes, as well as a map from stack
cells to the values that reside in them. The main contribution of these components

32

PC Instruction StackDepth Stack Vars

0 1 2 3 4 5 0 1

1 lconst 0 0 L L’

2 lconst 1 2 L L’ L L’

3 iconst 1 4 L L’ L L’ I

4 ifeq L 5 L L’ L L’

5 dup 2 4 L L’ L L’ L L’

6 ladd 6 L L’ L L’

7 L: ladd 4 L L’

8 lstore 0 2 L L’

Figure 16: An Example Program and the Abstraction for Stack and Variable States.
Each Instruction is Labeled with the Stack Depth Prior to the Execution of that
Particular Instruction.L stands forLONG, L’ for LONG’, and I for INT .

is to allow the dynamic semantics to work on a register file and to enable the
transformation of the code into SSAbeforeverification.

4.1.4 Algorithm

The goal of our approach is to avoid an up-front iterative data-flow analysis to
verify JVML. Instead, the JVML code is annotated so that the flow of values
between core instructions becomes explicit instead of relying on an operand stack.
This enables us to eliminate all data-flow instructions from the code after SSA
construction. These instructions are no longer needed because they only facilitate
data flow, but do not actually compute anything. Once the code consists of core
instructions only and is in SSA form, it is possible to perform type-safety checks by
directly relating the type of each definition with the corresponding uses (definition-
use verification).

For a small example program, the result of the annotation step is shown in
Figure 16. Each instruction is annotated with the current stack depth before the
instruction is executed. Using these annotations and the dynamic semantics of
JVMLS , instructions no longer depend on the stack to connect operands to their
definitions. Values on the stack are labeled relative to their distance to the bottom of
the stack. The value produced by aniconst instruction executed on a previously
empty stack, for example, would be labeled with0, because it is currently at the
bottom of the stack. This labeling permits to resolve stack references without
actually maintaining a stack data structure. Aniconst instruction annotated

33

with sd = 0, for example, always writes its result to stack cell0. In unannotated
JVML the stack cells receiving the produced value would depend on the state of
the dynamic stack at that point in the program.

Following the JVML machine model we split long integers into two halves.
Thus, instructions operating on long integers push and pop pairs of values onto and
from the operand stack. Correspondingly, for each definition of a long integer two
values are defined, one for the bottom half (typeLONG), and one for the top half
(typeLONG’).

After the annotation phase, our verification algorithm first computes the
Iterative Dominance Frontier (IDF) [66] for all definitions of values, that is values
written into stack cells or local variables. Each reachable instruction in the
program is visited in dominator-tree order and all references of core instructions to
stack cells and local variables are resolved to SSA-names. Data-flow instructions
do neither produce nor consume any values and are eliminated through copy
propagation.

After transformation into SSA and copy-propagation, we can perform the
actual type-checking. Similar to type inference performed by the traditional
verifier, the type ofφ-nodes is the common supertype of each definition theφ-
node refers to (φ operands), while regular core instructions always define a value
with a distinct type. These can be matched to their respective uses in a single sweep
over the program in linear time.

Type-checking is performed lazily in the sense that only the minimal number of
instructions is checked to ensure overall type-safety while for dataflow instructions
only the proper data flow is guaranteed. Considering only the dynamic semantics,
the data flow verified is obviously equivalent to the data flow that would have
resulted by interpreting the original JVML program. However, since data-flow
instructions have been eliminated, some of the restrictions enforced by their static
semantics do no longer apply. The following JVML program, for example, will be
rejected by the Java verifier, but is valid in our SSA-based dialect:

1: lconst 0
2: istore 1
3: iload 1
4: lstore 2

In this example, in Line 1 a long integer is pushed onto the stack as a pair of halves
(LONG, LONG′). Partially storing the long integer in an integer register (Line 2) is
rejected by the traditional verifier. In contrast, since our verifier does not consider
the typing rules of data-flow instructions, it accepts this code fragment, because the
(LONG, LONG′) pair pushed in Line 1 is restored on the stack before it is used in

34

Line 4. It is important to note that this program, while rejected by the Java virtual
machine, is perfectly safe when executed.

Due to space limitations, we are unable to elaborate on how to verify
exceptions, arrays, and object initialization and refer to our technical report [33]
instead.

4.2 Benchmarks

To evaluate the performance of our SSA-based verifier, we have implemented a
prototype verifier based on the algorithm presented here. Our prototype inlines
subroutines before verification. In order to arrive at a fair comparison with Java’s
standard verifier, we use the same modified Java code with inlined subroutines
also for the JVML verification benchmarks. Our rationale behind this is that the
subroutine construct in Java is obsolete and will probably be removed in future
versions of the Java virtual machine. Furthermore, our current algorithm depends
on the fact that the control-flow graph can be recovered quickly from JVML code.
In the presence of subroutines, this is not always the case as returning edges from
subroutines are not explicit.

As a comparative benchmark, we compare the total runtime of our SSA-based
verifier to the runtime of Sun’s DFA-based verifier. In both cases, we use the
preverify tool shipped as part of Sun’s KVM [52] to inline all subroutine calls
before measuring the actual verification times. Both verifiers are implemented in
C and use the same underlying framework to read and represent Java class files.

To eliminate any cache effects and to compensate for timing errors, both
verifiers are run one hundred times on each method from the test set. There
currently is no established set of benchmarks to test the performance of verifiers.
Benchmark suites such as SPECjvm [65] are designed to evaluate the performance

of method size stack depth local variables
methods ø max ø max ø max

java/* 6490 41.36 4065 2.74 14 2.47 37

java/io 1213 38.12 1295 2.39 8 2.35 15

java/lang 1336 38.41 4065 2.32 10 2.17 37

java/math 405 72.67 3041 3.16 8 3.73 29

java/nio 2096 26.80 417 3.05 11 2.31 15

java/util 2359 49.21 2916 2.64 14 2.62 25

Figure 17: Characteristics of the Test Set Used to Compare the Runtime of the
SSA-Based Verifier With the Runtime of the Traditional Verifier.

35

of code execution,not code verification. Thus, we have decided to use various
parts of the Java Runtime Libraries (JDK 1.4.2) as a test set. Figure 17 list
some characteristics of the used classes. All measurements were conducted on
a Pentium4 2.53GHz CPU with 512MB of RAM, running under RedHat Linux 9.

Figure 18 compares the total runtime of the traditional DFA-based verifier with
our SSA-based verifier. Verification in SSA-form is approximately 15% faster than
the traditional algorithm when comparing the total runtime. Not considering the
time spent to calculate the dominator relation and the dominance frontier, SSA-

0

2

4

6

8

10

12

14

16

java/ java/io java/lang java/math java/nio java/util

[s
e

co
n

d
s]

Verify (DFA) Verify (SSA, total) DOM DF Check

0

20

40

60

80

100

120

140

160

180

java/ java/io java/lang java/math java/nio java/util

[t
y
p

e
 c

h
e
ck

s
(t

h
o

u
sa

n
d

s)
]

Verify (DFA) Verify (SSA)

Figure 18: Comparison of the Total Runtime and the Number of Instructions that
have to be Type-Checked for the Traditional DFA-Based Verifier vs. the SSA-
Based Verifier.

36

based verification is approximately 45% faster. The total number of instructions
that has to be type-checked in the case of SSA-based verification is roughly 38%
less than for the traditional verifier. The only noteworthy exception isjava/math,
which actually requires slightly more instructions to be type-checked in SSA form.
This is caused by our treatment of theLONGandDOUBLEtypes, which we split in
two halves while the traditional verifier can treat them in a single step.

4.3 Related Work

In addition to the informal description of the Java virtual machine [48], a number of
formal specifications of the JVML and its verifier have been proposed [27, 47, 67].
In this context, subroutines are of particular interest and several type systems have
been proposed for them [55, 57, 68]. All these approaches have in common that
they rely on some form of iterative data-flow analysis [47, 58] to decide type-safety.

Proof-carrying code(PCC) [54] addresses this problem by relieving the code
consumer of the burden to verify the code. Instead, the code producer computes
and proves a verification condition. The code consumer recomputes the verification
condition and checks whether the attached proof is valid. PCC can even be used
to prove safety properties of machine code. SSA-based verification, in contrast,
is limited to mobile code formats such as Java, but has the advantage that it only
requires the actual code as input, and no additional information such as proofs.

The split verifier approach [70], based on the idea of Lightweight Bytecode
Verification [60], applies the PCC idea to Java bytecode. Apreverifierannotates
the JVML with the fixed-point of the data-flow analysis otherwise performed by
the JVM during class loading. For annotated class files the verification is reduced
to confirming that the annotation is indeed a valid fixed-point. Just as in the case
of Necula’s PCC, the annotations enlarge the overall size of class files, while our
approach does not rely on any additional annotation.

Similar to the split verifier, the verifier for Java smart cards [46] reduces the
burden on the verifier through offline bytecode transformation. A preprocessor
tool ensures that the Java stack is empty after every branch instruction and that all
registers are mono-typed. In contrast to our approach, the Java smart card verifier
fails for Java class files which have not been processed this way.

Inherently safe mobile code representation formats such as SafeTSA [2] elim-
inate the need for verification as mobile code is stored in a self-consistent format
that cannot represent anything but well-formed and well-typed programs. Just
like PCC, such formats have a systematic advantage over SSA-based verification,
but require abandoning the existing Java class file format, which is not always
acceptable. Our approach and SafeTSA have in common that they both make the

37

code available to the just-in-time compiler in SSA-form, which can be used to
speed up code generation.

SSA-based representations have been used in several approaches to com-
pilation of bytecode. Marmot [24] is a research platform for studying the
implementation of high-level programming languages. The main difference to our
work is that Marmot only accepts verifiable programs. This property of the input
program allows to make certain assumptions on properties of the code, e.g. about
the types of local variables and stack entries. Similar to our work, Marmot
inlines subroutines to avoid complex encoding as normal control flow similar to
Freund [28].

As Kelsey and Appel have observed [4, 43], there is a close relation between
SSA form and functional programming. Therefore, the work of League et al. [44]
is directly related to our work.λJVM, a functional representation of Java bytecode,
makes data flow explicit, just like our work. They also split verification up in two
phases, one during the construction ofλJVM code, and a simple type checking
later. However, they initially perform a regular data-flow analysis to infer types
for the stack and local variables at each program point. This is in contrast to our
approach, were the reason for splitting the verification in two phases is exactly to
avoid the initial data-flow analysis.

4.4 Section Summary

Existing JVML verifiers perform substantial data-flow analysis but do not preserve
the results of this analysis for subsequent code generation and optimization
phases. We have presented an alternative verifier that not only is faster than
the standard Java verifier, but that additionally computes the Dominator Tree
and brings the program into Static Single Assignment form. As a result, the
respective computations need not be repeated in subsequent stages of the dynamic
compilation pipeline. Since our algorithm has an overall lower cost than traditional
Java bytecode verification, this essentially makes an SSA representation available
“for free” to the virtual machine, reducing the cost for just-in-time compilation.

In the larger context of verifiable mobile code, our results indicate that
verification should not be practiced in isolation “up front”, but integrated with the
rest of the client-side mobile code pipeline. Hence, we expect our approach to be
applicable to other mobile-code systems besides the Java virtual machine, such as
Microsoft’s .NET platform [17].

Our work is also relevant for all existing Java virtual machine implementations
which already use SSA internally for code optimization. If a virtual machine
already has means to translate code into SSA, having an “up front” data flow
based verifier is simply redundant. We have shown that it is possible to delay

38

type checking and to first transform the program into SSA. In fact, our algorithm is
the first documented approach to safely translate Java code into SSA without any
prior data-flow analysis and verification.

In the future, we plan to examine how subroutines could be supported in our
framework. While subroutines are rapidly disappearing from JVML, they are still
interesting from an academic perspective. They reinforce the question whether and
how an SSA-based representation can be obtained for polymorphic code in which
not all control-flow edges are explicit.

We are also interested in exploringstructuralSSA-annotation of JVML code.
For this, JVML code is rearranged in such a way that a specific structure-aware
SSA-based verifier can infer the final SSA-form of the code without actually
calculating the Dominator Tree and Iterative Dominance Frontiers. As the code is
still expressed in pure JVML, it is fully backward compatible with existing virtual
machines and does not require any additional annotations. While the rearranged
code is likely to be less compact than its original form, this scheme will further
reduce the required verification effort.

5 Conclusion

This research project has made three important contributions that are likely to have
a lasting impact on the design of mobile-code systems. By demonstrating how
code can be generatedinside the network, we believe to have created a blueprint
for future “soldier radio” and similar data networks with resource-limited handheld
terminal nodes.

By exposing the vulnerability of verification-based mobile code formats such
as Java toattacks based on the complexity of the verification mechanism, our work
puts into perspective the claims of the open-source community. We hope that this
will effect a rethink of current strategies that optimize for the average case, rather
than for the worst case.

Lastly, we have invented a newmobile-code verification algorithm that benefits
subsequent code optimization. We expect others to adopt our approach, which has
no apparent disadvantage but many obvious advantages.

39

ONR Final Report

Co-PI: Brett D. Fleisch, Professor

Department of Computer Science and Engineering
University of California, Riverside
Grant Period: 12/1/2002~4/30/2004

Grant No.: 00767-004

I. List of Written Publications
1. Yougang Song, Ying Xu and Brett D. Fleisch, BRSS: A Binary Rewriting Security System
for Mobile Code, submitted to 25th IEEE International Conference on Distributed Computing
Systems (ICDCS2005), Columbus, Ohio, June 6-9, 2005.

2. Ying Xu and Brett D. Fleisch, NFS-cc: Tuning NFS for Concurrent Read Sharing, the
International Journal on High Performance Computing and Networking (IJHPCN),
Inderscience Publishing, issue 3, 2004

3. Yougang Song and Brett D. Fleisch, Sandboxing Mobile Code from Outside the OS, in the
19th ACM Symposium on Operating Systems Principles, Work in Progress Session, The
Sagmore, Bolton Landing (Lake George), New York, 2003.

4. Yougang Song and Brett D. Fleisch, Rico: A Security Proxy for Mobile Code, Journal of
Computers and Security Elsevier Advanced Technology, Elsevier Press, Volume 23, Issue 4,
2004, pp. 338-351.

5. Ying Xu and Brett D. Fleisch, Cooperative Caching in Linux Clusters(pdf), Proceedings of
the ClusterWorldConference and Expo 2003, San Jose, CA, Jun 23-25, 2003, San Jose, CA.

II. Personnel
Co-PI: Brett D. Fleisch (Associate Professor)
Dr. Fleisch currently has assumed a position with the National Science Foundation (NSF) in
Arlington, VA as Program Director for Distributed Systems and Operating Systems. He
remains an associate professor at the University of California faculty while on assignment to
NSF. Dr. Fleisch received his B.A. degree in Computer Science at the University of
Rochester, his M.S. degree in Computer Science at Columbia University, and his Ph. D.
degree from the University of California, Los Angeles. He is a member of the ACM, IEEE
Computer Society, and USENIX. Dr. Fleisch’s research areas include: distributed computing,
operating systems, workstation environments, large scale computing systems, operating
systems software engineering metrics, security, reliability, heterogeneity, and software quality
assessment and power management for computing clusters.

Employees:
Peter H. Froelich is currently a Postdoctoral Scholar and lecturer in the Department of
Computer Science and Engineering at the University of California, Riverside. He received his
Diplom-Informatiker degree from the Munich University of Applied Sciences, Germany, his
master’s degree in Information and Computer Science from the University of California,
Irvine, and his doctorate in Information and Computer Science from the University of
California, Irvine. His research focuses on the fuzzy intersection of software engineering,
programming languages, and computer systems.

Ying Xu is currently a Ph.D. candidate in the Department of Computer Science and
Engineering at the University of California, Riverside. He received his B.E. degree at Tianjin

University, China. His research area focuses on operating systems, cluster systems,
distributed file systems and mobile code systems.

Yougang Song is currently a Ph.D. candidate in the Department of Computer Science and
Engineering at the University of California, Riverside. He received his B.E. degree in
Electrical Engineering from Shandong University of Technology, China, his M.E degree in
Computer Engineering from Chinese Academy of Sciences, China, and his M.S. degree in
Computer Science from University of Texas. His research area focuses on operating systems,
mobile code security, and distributed file systems.

David Watson is an undergraduate employee at the University of California, Riverside.

III. List of Papers Presented
1. Yougang Song and Brett D. Fleisch, Sandboxing Mobile Code from Outside the OS, in the
19th ACM Symposium on Operating Systems Principles, Work in Progress Session, The
Sagmore, Bolton Landing (Lake George), New York, 2003.

2. B. D. Fleisch, Grand Challenges in IT Security and Assurance, First International
Workshop on Frontiers of Information Technolgy, Islamabad, Pakistan, December 23-34,
2003.

3. Ying Xu and Brett D. Fleisch, Cooperative Caching in Linux Clusters, Proceedings of the
ClusterWorldConference and Expo 2003, San Jose, CA, Jun 23-25, 2003, San Jose, CA.

Sandboxing Mobile Code from Outside the OS
Yougang Song Brett D. Fleisch

{ ysong, brett}@cs.ucr.edu
University of California, Riverside (UCR)

(Extended Abstract)
INTRODUCTION

Today’ s highly connected computer systems are more
frequently exposed to code originating from various sources.
Malicious code, or even trusted code, may compromise security.
Even the best-intentioned security patch downloaded from the
Internet may violate security policies an administrator has
established. Execution-time methods to mediate access to mobile
code downloaded from the Internet, such as a kernel reference
monitor or Java sandboxing can be costly, inefficient and error
prone [1]. A global security mechanism requires code originating
from one system execute safely on another system when there is
no established trust relationship between the systems.

At UCR we designed a novel security infrastructure called
Rico [1]. Rico interposes itself between a client system that
requests mobile code and the remote system providing the code,
monitoring and securing untrusted code by rewriting it (as shown
in Fig. 1). Rico leverages the Inline Reference Monitor (IRM)
binary rewriting technique. A load-time rewriter (Rico supports
PoET, developed at Cornel University) merges the security policy
into the mobile code binary. In addition, Rico supports features
like mobile code management, policy management, policy
acquisition and reuse [1].

Figure 1. Sandboxing mobile code from outside the OS

Rico functionality can be placed at Internet access points

such as proxy servers to isolate end user from security problems.
Different from many content security systems, which merely
focus on detecting viruses or malicious code by comparing the
received binary for virus signatures or a list of dangerous activity
patterns, Rico is based on the idea of sandboxing the code.
Administrators can confine a mobile code’s activity by defining
specific security policies suitable for their particular domain.
These policies are merged into the mobile code so that the code
will strictly adhere to these security constraints.

In this work, we integrate Rico into Apache, which is
currently the most popular proxy server deployed. The resulting
system provides security for mobile code downloaded to end users.
Java applets and (in the future) OS patches can both be rewritten
to guarantee better security. Our preliminary experiment results
show that such a system adds little performance overhead.

INTEGRATING RICO WITH APACHE

The Apache filters mechanism processes a Web document for
several pieces of information. Each piece of information will be
processed at one filter before it is passed to the next. We thus

designed a security filter before all the other output filters; the
security filter observes the binary code in the data flow and sends
a notification to Rico. Rico runs as a service daemon and rewrites
the binary code with the preloaded security policies that pertain to
Applets or patches of this kind. The rewritten binary code is then
passed to the next filter, which caches the code in the proxy cache
(if cacheable) and sends it to the client. Subsequent requests for
the same binary code will be satisfied from the proxy cache
without the intervention of the security filter. Apache handles
cache coherence so cached data remains current.

PRELIMINARY RESULT AND FUTURE WORK

We evaluated the performance overhead of Rico combined
with Apache. The experiment was performed on a Dell
Dimension 2450 with 2GHz Pentium4 CPU, 640MB RAM and
Mandrake Linux 9.0 installed. We rewrote the codes with the
policy limitMem and readDir respectively. limitMem limits the
amount of the memory that the application is allowed to use and
has the worst performance overhead in our measurements [1].
readDir prevents the codes from accessing a specific directory.
Fig. 2 shows the performance as compared with each binary file’s
size. The data label above each bar refers to hit times, which is the
number of events that PoET need to add monitoring code to. For
readDir, there is no hit and the time merely reflects the time that
PoET takes to scan through the binary file. For limitMem, there
are different amount of hit times for each code and the time
reflects the time that PoET takes to scan and rewrite the code.

1
5 9 7 5 9 5

9 13
20

13 13 28 15 42
32

95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

48
8

10
57

22
51

311
1

39
65

48
91

54
11

61
48

72
74

937
3

11
093

122
34

13
00

1

16
49

3

16
56

3

19
88

4

24
867

binary f ile size (bytes)

tim
e

(s
ec

s)

scanning time (readDir)
rew riting time(limitMem)

Figure 2. Rico performance evaluation

In [1], we have shown that both the scanning and rewriting

time are generally a linear function of file size; the rewriting time
is also linearly proportional to hit number. Fig. 2 shows that the
Java initialization time from PoET startup [1] is minimized and
the performance overhead increases gradually as the file size and
hit times increase. However, selecting a default set of policies that
can generally satisfy an end system’s security requirements can be
challenging. Future work will evaluate this more extensively.

 [REFERENCE]: Yougang Song, Brett D. Fleisch, Rico: A

Security Proxy for Mobile Code, to appear in the Journal of
Computers & Security, ELSEVIER Advanced Technology, 2003.

 1

BRSS: A Binary Rewriting Security System for Mobile Code

Yougang Song Ying Xu Brett D. Fleisch
Distributed Systems Laboratory

Department of Computer Science & Engineering
University of California, Riverside

{ysong, yxu, brett}@cs.ucr.edu

Abstract

In recent years, binary rewriting techniques have been
advanced to allow users to specify a richer set of security
policies and to enforce them directly on mobile code. Such
techniques have their advantages over traditional mobile
code security solutions. However, problems arise
concerning how we can use binary rewriting to achieve
better security and how code rewriting overhead affects
system performance. In this paper, we address these
questions by presenting our Binary Rewriting Security
System (BRSS), which is a prototype that integrates binary
rewriting with proxy caching techniques.

The contributions of this paper are: (1) we designed a
general framework that supports a variety of binary
rewriters, while at the same time minimizes the rewriting
overhead and provides efficient management for mobile
code and associated security policies and (2) we built a
prototype of a binary rewriting proxy by integrating the
binary rewriter with caching proxy; (3) we conducted a
study on Internet traffic focusing on the traffic
characteristic of JAVA applets; (4) we did a
comprehensive performance evaluation of our prototype
system. The results show that adding such a system to the
proxy server doesn’ t significantly affect overall
performance and the overhead added by binary rewriting
will easily be amortized during caching.

1. Introduction

Mobile code is the code that can be transmitted across
the network and executed on the recipient. JAVA applets
are the most common form of mobile code. These applets
are usually embedded in web pages and automatically
downloaded and executed in the users’ web browsers.
Failure to properly secure mobile code may cause security
threats to the host system, such as damage to the file
system, excessive use of resources and leakage of private
information [1]. Not only could untrusted code be created
with malicious intention, but also it could result
unintentionally. Specifically, programming errors can be
exploited by attackers in mobile code [2]. The buffer

overflow problem, in which the overflowed content can
overwrite existing data, instructions, returned address in
the memory, is such an example.

Traditional solutions to mobile code security have been
examined from the operating system perspective. They
employ a host security system that monitors a mobile
program’s behavior and determines whether resource
requests are granted or rejected access according to some
predefined security policies or administrative policies. For
example, using a kernel reference monitor [7], the kernel is
the only software trusted to access the critical system data
structures. Consequently all access requests to critical data
is mediated by the kernel through system calls. In JAVA
[8], however, security is enforced by three critical
components. The byte-code verifier checks the untrusted
code to make sure that it does not violate memory safety
properties. The applet class loader ensures that the JAVA
classes are separated in different name spaces and tagged
properly with security information such as the code’s
origin and digital signature. The security manager acts as
the reference monitor to enforce run time checks.

Binary rewriting techniques have two major advantages
over the traditional solutions. First, it supports a richer set
of security policies. Traditional host security systems
provide general security rules that enforce access control,
but it is hard for them to enforce a security policy such as
“no sending messages after reading specific files” .
However, binary rewriters have the flexibility to insert
arbitrary security checks into the mobile code. It is
possible for them to add an Inline Reference Monitor [5] to
monitor the execution status of the mobile code.
Consequently binary rewriters can be easily customized to
support more advanced security policies. Second, a binary
rewriting system doesn’ t rely on the host security system
to enforce security. The inline reference monitor inserted
into the mobile code is self-contained. It observes the
execution of the mobile code and terminates it when it is
about to violate a security policy. Because running a host
security system requires much more resources, this
characteristic of binary rewriting is particular useful to the
systems that have tight constraints on power consumption
and memory capacity such as Personal Digital Assistants
(PDAs) and mobile sensors.

 2

However, binary rewriting systems [22, 23, 6] were
designed to work with standalone computers. The
administrative overhead of configuring security policies
and managing the rewritten code prevents them from being
used in large scale. The performance overhead in this case
not only includes the known rewriting overhead but also
the overhead caused by system initialization. For example,
in order to run PoET, the JAVA virtual machine should be
initialized first and then the security policies should be
parsed and loaded into memory. Also, such system usually
lacks a convenient application and management interface
for security administrators. Tools such as PoET were
merely command line oriented.

We solved these problems by integrating binary
rewriting into web proxy servers and designed BRSS
(Binary Rewriting Security System). BRSS gives system
administrators centralized control of security polices and a
uniform way to enforce security policies at the level of
administrative domains through proxy servers. All applets
passing through the proxy server are automatically
rewritten and guaranteed to be secure before they reach the
recipients. There is no specific security configuration
required at the recipients’ side. BRSS eliminates the binary
rewriter’s initialization overhead by running them in the
background as a multithreaded process. To reduce the
overhead, we designed BRSS to cache the rewritten
applets. All subsequent requests for the same applets are
served directly from the cache without rewriting overhead.
According to our comprehensive performance evaluation,
under the realistic JAVA applet traffic model, the caching
of rewritten applets greatly amortizes the rewriting
overhead and thus BRSS doesn’ t add significant
performance overhead to the proxy server.

The rest of paper is organized as follows: Section 2
gives a short survey of binary rewriting techniques to
security. Section 3 describes BRSS, its architecture and
implementation. Section 4 gives the performance
evaluation. Section 5 discusses related work, followed by
conclusions in Section 6.

2. Binary Rewriting Techniques to Security

A binary rewriting system transforms a binary program

into a different but functionally equivalent program [3].
Because it requires no knowledge of the source code,
binary rewriting has been widely used in the area of code
migrations across different processor architectures,
performance instrumentation and program optimization,
such as optimizations on code speed, size and power
consumption [4,9,10,11,12,13,16]. Application of binary
rewriting techniques in computer security area mainly
focused on dealing with commonly seen and dangerous
attacks, such as the buffer overflow problem [18]. Before
real binary rewriting security techniques appears, many
works are proposed based on compile time analysis and

transformation such as RAD [14], which protects buffer
overflow attacks by adding protection code into the
prologue and epilogue of the program at the compile time;
Or based on run-time interception and checking such as
Libsafe [21], which is based on a dynamically loadable
library that intercepts all function calls made to library
functions that are known to be vulnerable; Or the
sandboxing techniques such as Software Fault Isolation
(SFI) [24], which uses the idea of Address Sandboxing to
enforce system security.

The Binary-Rewriting RAD [15] extends the work of
RAD and first applies the security directly on binary code
without requiring access to program source code, symbol
tables or relocation information. It uses a combined
disassembly techniques to identify the boundary of every
procedure in the input program. The protection code is
appended to the end of the original binary. It inserts the
code at the function prolog to save a copy of the return
address and the code at the function epilog to check the
return address on the stack with the saved copy. Some
instructions at the function prolog and epilog are replaced
by a JMP instruction to redirect the control to the inserted
code at a function’s prolog and epilog. Purify [25], detects
run-time memory leaks and access errors by inserting
checking instructions directly into the object code and
before every load or store. To detect memory access errors,
Purify maintains a state code for each byte of memory and
a run-time check is enforced by the checking instructions
whenever time the program makes memory access. To
make binary analysis and rewriting efficient, SELF [21]
proposed a transparent security enhancement to ELF
binaries by adding an extra section. The extra section
contains information specifically needed for binary
analysis and hence it is convenient to perform many
security-related operations on the binary code.

Comprehensive binary rewriting security systems
appeared when binary rewriting techniques were used to
enforce security policies specified by host system
requirements. The benefit provided by such security
systems is the flexibility to enforce security policies that
are not supported by the standard security mechanisms
[26]. Notable such systems are Naccio [22], SASI [23] and
PoET [6]. Naccio allows the expression of safety policies
in a platform-independent high level language and applies
these policies by transforming program code. A policy
generator takes resource descriptions, safety policies,
platform interface and the application to be transformed
and then generates a policy description file. This file is
used by an application transformer to make the necessary
changes to the application. The application transformer
replaces system calls in the application to functions in a
policy-enforcing library. Naccio has been implemented for
both Win32 and JAVA platforms. Security Automata SFI
Implementation (SASI) [23] uses a security automaton to
specify security policies and extends the idea of software

 3

fault isolation by merging security policy into the
application itself. The security automaton acts as a
reference monitor for the code. In relation to a particular
system the events that the reference monitor controls are
represented by the alphabet, and the transition relationship
encodes the security policy enforced by the reference
monitor (so called IRM, Inline Reference Monitor [5]).
The security automaton is merged into application code by
an IRM binary rewriter. It adds code that implements the
automaton directly before each instruction. The rewriter is
language specific: x86 SASI is the implementation for x86
machine code and JVML SASI is for JAVA virtual
machine.

PoET (Policy Enforcement Toolkit) [6] is an
implementation of IRM for JAVA applications. Superior to
Naccio and SASI, which requires the source code
information or binaries generated with special compiler,
PoET does not require any source code information
available and the code after being rewritten can be
executed on any version of JVM. It uses relatively higher
level, event-oriented, JAVA-like language to specify
security policies, which is called PSLang. Specifying a
security policy involve defining [5]: Security events to be
mediated by the reference monitor; Security state that
stored about earlier security events and is used to
determine which security events can be allowed to proceed;
Security updates that update the security state, signal
security violations and/or take other remedial action when
the related security event happens. PoET adds the security
enforcement according to the instructions specified in the
security policy.

3. BRSS: Binary Rewriting Security System

We designed BRSS (Binary Rewriting Security System)
with two goals: 1) reduce the administrative overhead of
enforcing mobile code security and 2) reduce the
performance overhead of adding binary rewriting to proxy
servers. In this section we describe BRSS, focusing on its
integration with web proxies.

3.1. Overview and Architecture

We integrated BRSS into caching proxy servers (as

shown in Figure 1). A proxy server stays between clients
and remote Internet servers and transparently mediates all
requests for web objects. Proxy servers usually provide
caching service, which improves access speed, reduces the
load on networks and servers and increases availability by
replicating information [37]. Sitting between the proxy and
cache, BRSS secures the recipients by intercepting
untrusted mobile code and rewriting it according to the
specified security requirements. This provides system
administrators an easy way to enforce security policies at

the level of administrative domains without configuring
each individual machine. BRSS was designed to utilize the
existing caching facilities in the proxy server. When a
client sends a applet request to the proxy and if the proxy
serve can not find it in the cache (which is called a cache
miss), the proxy forwards the request to the remote server
and BRSS intercepts and rewrites the applet files returned
from the remote server. Thus an overhead is added in the
process. The rewritten and hence secured code is then
cached in the proxy cache and distributed to the client for
all subsequent requests. The whole process is transparent
to the proxy cache and cache validation is handled by the
cache as it used to be. Subsequent requests for the same
applet may have already been rewritten and cached in the
proxy cache (which is called a cache hit). In this case, the
request can be satisfied directly by the rewritten code from
the cache without the intervention of BRSS. With the
cache size increases, more and more rewritten applet files
are cached and the hit ratio increases, therefore the
overhead added by BRSS will be amortized by the
increasing number of applet requests satisfied by cached
rewritten code.

Figure 1. BRSS overview

As shown in Figure2, BRSS has four parts: Database,

Application Management, Policy Editor, and Binary
Rewriter. Database stores security policies. It organizes
the security policies into several categories such as file
system, network communication and memory usage and
differentiates the policies within each category into
different security levels. The database also keeps the
history of changes made to binaries that are rewritten.
Application Management, a graphical user interface, is
provided for administers to manage the database and
binary rewriter conveniently. The Policy Editor reduces
the complexity of creating security policies by wrapping
the JAVA Virtual Machine Library (JVML) with an
abstract intermediate level. Detailed description of the
management system can be found in our previous work
[34]. The Binary Rewriter is actually a plug-in module for

 4

real binary rewriters. It provides two buffers for the binary
rewriter. The real binary rewriter gets its input from the
receiving buffer and rewrites the code to the output buffer.
A content filter inserted at the proxy intercepts and filters
out the mobile code that pass by to the binary rewriter’s
receiving buffer.

Figure 2. BRSS system architecture

3.2. Implementation Details

We chose PoET [6] as the binary rewriter for BRSS
because it provides all the features mentioned in previous
section and we have been using it in previous work[34]. As
mentioned previously, PoET is a command-line JAVA
application with high initialization overhead. To reduce the
overhead, we modified PoET and allowed it to run in the
background as a multithreaded server preloaded with a
specified set of security policies. BRSS can also support
other binary rewriters. The binary rewriter can be supplied
as a plug-in module that is easily replaceable.

We selected Apache as the web proxy server. Apache is
more well-known as web server rather than proxy server.
The reason that we chose Apache is because it provides a
filter mechanism so that we could easily add a content
filter that integrates BRSS with the proxy server. Also, the
performance of Apache as proxy server is good enough for
our prototype system.

A skeleton of the content filter is shown in Figure 3.
When the proxy gets a request, it first checks if the request
can be served from its cache in the cache_url_handler
function. If it is a cache hit, the cache_out filter is added to
get the data from the cache, otherwise, it adds a cache_in
fi lter before all the other output filters to save servers’
reponse into the cache. We thus placed our security filter
whenever a cache_in filter is needed and made it process
the data flow before the cache_in filter. JAVA applet
traffic can be identified by analyzing the URLs. Once it’ s

found, the complete file will be pulled out by the
pull_data_out function, the function notify_PoET will be
called to send the notification to PoET, after which the
applet file will be pushed back into the dataflow by
push_data_in function.
 /* seucrity filter*/
 static int security_in_filter(..)
 {
 //pull the “ .class” file out
 rv = pul l_data_out(…);
 }
 /* register the fi lter*/
 static void register_hooks(…)
 {
 security_in_filter_handle= ap_register_output_filter(..,
 security_in_fil ter, …);
 cache_in_fil ter_handle = ap_register_output_filter(…,
 cache_in_filter, …);
 }
 /*analyze the url* /
 static int cache_url_handler(…)
 {
 //if the request can be served from the cache
 ap_add_output_filter_handle(cache_out_filter_handle, …);
 //if it can not add the cache_in filter and add the security filter
 ap_add_output_fil ter_handle(security_in_fil ter_handle, ..);
 ap_add_output_fil ter_handle(cache_in_filter_handle, …);
 }
 /* pull out the class file */
 static apr_status_t pul l_data_out(…)
 {
 //send notification to PoET
 i f (notify_PoET(…) > 0)
 {

//push the rewritten code back to the data flow;
 i f ((rv = push_data_in(…))!= APR_SUCCESS)
 …
 }
 }

Figure 3. The skeleton of the content filter added to
Apache2.0

4. Performance Evaluation

In this section, we study the performance overhead of
adding BRSS to an Apache proxy. We chose Web
Polygraph [31] as our benchmarking tool because it is a
freely available and widely accepted benchmark [40] that
is specifically for proxy performance measurement. In
order to simulate the real applet file traffic, we examined
applet traffic characteristics by analyzing the raw proxy
cache access logs. We analyzed the overhead added by
BRSS on JAVA applets requests. We then compared the
proxy’s overall performance with and without BRSS under
different request rates.

4. 1. Web Polygraph and the Workload Model

Web Polygraph is designed specially for caching proxy
benchmarking. Its latest workload model, Polymix-4,
includes many key web traffic characteristics, such as

 5

synthetic workload composed of various content types,
specified request rates and inter-arrival times, a mixture of
cache hits and cache misses, etc. Most importantly, Web
Polygraph has the capability to simulate real content traffic,
which is crucial for testing our binary rewriting system.
Table 1 summarizes the content types that the Web
Polygraph server uses for benchmarking. The server hosts
mainly three content types (i.e. image, HTML, download.)
with specific file extensions. All other content types are
included in the ‘other’ type without specifying file
extensions. In order to test our BRSS, we need the server
to generate real applet file traffic. We will describe in
detail the applet request traffic model in the next section.
The size models of content types listed in Table 1 are
generated by analyzing unique file size transportation from
the web proxy log [32].Table 2 lists the default parameters
of the polymix-4 workload model. If not specially stating,
we use the polymix-4 workload model by default.

Table 1. Content types of Web Polygraph workload

Type
Percen

tage
Reply Size

Distribution
Cacha
bility Extensions

Image 65% Exponential(4.5KB) 80.00%
.gif, .jpeg,
and .png

HTML 15% Exponential(8.5KB) 90.00%
.html

and .htm

download 0.5%
Log-normal(300KB,

300KB)
95.00%

.exe, .zip,
and .gz

Other 19.5%
Log-normal(25KB,

10KB)
72.00%

Table 2 Default parameters of the workload model

Client request rate 0.4/secs

Number of transactions per
connection

Zipf (64)

Request types IMS: 20% Reload: 5% Basic 75%

Server delay 40 millisecond/packet

Server think time Normal distribution (2.5, 1)

4.2. Applet File Traffic Model

Many studies have been performed on analyzing
Internet traffic characteristics[28,19,20]. However, to our
knowledge, no specific analysis on JAVA applet file traffic
model has ever been published in the literature. So we
conducted our own research on applet file traffic. In this
section, we present our applet traffic model by analyzing
the raw proxy logs.

We used the raw access logs and daily summary reports
provided by the IRCache project [33]. These logs were
collected on a daily basis between July 11th, 2004 and
August 11th, 2004 from a number of proxy servers located
at various educational and commercial institutions
throughout the United States [33]. The access log records
the client’s request information for HTTP object and

consists mainly of the entries of time, duration, client
address, result codes, bytes, request method, URL, type
and etc. Therefore, applet file requests can be identified by
their extension (i.e. .class) in the corresponding URL
entries and from the ‘ result codes’ entry we can determine
the status of the specific transaction. Table 3 shows the
statistic summary for the raw data set. The successful
requests mean the transactions whose HTTP result code is
“200/OK”. From this table we can calculate that the applet
file requests take 0.08% of the total requests. Among the
applet file requests, 27.08% are successful requests. The
main errors have the code 304 (not modified) 31.3%, 404
(not find) 27.1% and 503 (Service Unavailable) 32.6%.
Among the successful request, 59.6% are unique files
requests.

Table 3. Summary of access log characteristics

Access log Duration
08/11/ 2004 ~
09/10/ 2004

Total requests count 117790462

Total applet request count 95054

Total successful applet requests count 25737

Total unique successful applet requests count 14646

Mean size of successful applet requests 7176.85

Median size of successful applet requests 3725

Mean size of successful unique applet file 7085.56

Median size of successful unique applet file 3775

Figure 4 shows the distribution of all successful unique

applet files in the data set. Figure 4a compares the
distribution with the synthetic lognormal distribution (the
dashed line) with parameters � = 7.61 and � = 0.66. Figure
4b is the corresponding cumulative frequency plot. As we
can see, the applet file size distribution is close to log
normal distribution.

(a) Frequency

 6

(b) Cumulative frequency

Figure 4. Unique applet file size distribution

Figure 5 shows the transfer size distribution of all
successful applet file in the data set. Figure 5a shows the
distribution is close to the lognormal distribution (the
dashed line) with parameters � = 7.06 and � = 0.70. Figure
5b is the corresponding cumulative frequency plot.

(a) Frequency

(b) Cumulative frequency

Figure 5. Successful applet file transfer size distribution

We also analyzed the IRCache daily summary report of
applet files in an extended period from 1997 to 2004.
Figure 6 shows the daily applet file request ratio (6a) and
the daily mean size (6b) respectively. The dashed line is

the mean value. From these figures we can see that the
applet file requests rate started from 0.6% in the year of
1997, dropped after the year of 2002 and tends to be
stabilized at 0.08%. The mean applet file size is 7110 bytes.

(a) Applet request ratio

(b) Mean size of applet requests

Figure6. Applet file request daily stat (1997~2004)

We decided to use the applet traffic model with the
parameters shown in Table 4 in our experiment. We took
0.25 percentages (the mean percentage) from the ‘other’
type of Polymix-4 workload as the applet file request
percentage. We built up the applet file generation database
on the server side with real applet files downloaded
randomly from the Internet and with the file sizes
according to the unique applet file size distribution. All the
other paraments such as cachability, object life cycle, etc,
we use the same as the ‘other’ type.

Table 4. Applet traffic model
Percentage 0.25%

File size distribution Lognormal(7.61, 0.66)

Other paraments Use default as ‘other’ type

4. 3 Experiment Setup

We used one pair of client and server in our
experiments. The hardware configuration is as following:
the client runs on a PC with 756Hz AMD CPU and

 7

256MB. The server and Apache proxy run on PCs with
2GHz Pentium4 CPU and 640 MB memory respectively.
All the three machines are connected through 100M
network. In addition, we installed name service and
network time(ntp) service on the proxy server, which are
required by the Web Polygraph benchmark. The proxy
server software that we used is Apache version 2.0. At the
time of our experiments, the garbage collection
functionality hasn’t been implemented on Apache 2.0 but
the same functionality works properly on Apache 1.3. We
thus rewrote the garbage collection part in version 1.3 and
added it to Apache2.0.

Web Polygraph uses synthetic clients and servers.
Given a specified Peak Request Rate (briefly PRR), a
number of clients will be created to generate the specified
PRR and an according number of servers will also be
created to response to the requests. Therefore, by varying
the PRR, we are actually changing the number of clients.
In our proxy configuration, we set the max client number
that the Apache can sustain concurrently to be 250, which
is approximately according to 30xacts/sec PRR. All the
other Apache proxy paraments are by default.

4. 4 Experiment Result

BRSS adds overhead to the applet file requests. In our

experiments, we want to learn exactly where the overhead
come from, how the cache size affects the overhead, and
how the overhead affects the proxy’ s overall performance.

4.4.1 The Overhead of BRSS on applet file requests. To
measure the overhead of BRSS adds specifically on applet
file requests, we kept a log on the proxy server to record
the applet cache miss time, in which case the requested
applet file is not cached and the proxy forwards the client’s
applet file requests to the remote server until it gets the
response data back and sends it to the client. With BRSS,
this time can be further divided the time into: buffer in,
which is the time from the proxy gets the client’s request
for applet file until the receiving buffer buffers the entire
applet file; rewriting, which is the time that the binary
rewriter takes to rewrite the file and buffer out, which is
the time that the rewritten file in the output buffer is
cached and sent to the client. Figure 7a shows the
comparison result. We use the PRR 30 xacts/sec for the
experiment, under which the proxy is fully loaded. As we
can see that the overhead added to the applet request is
mainly caused by buffer in time. This is because the binary
rewriter requires the entire file to be cached before it can
rewrite it while, instead, without BRSS the file will be
cached and then sent to the client in the unit of a trunk of
the file. The rewriting time adds relatively little to the
overhead. As shown in our previous work [34][35], the
rewriting time has also relationship with the binary file
size, the complexity of the security policy and the number

of places in the binary file that needs to add monitoring
code in. In our experiments, we used the security policy
limitMem, which is used to limit the amount of the
memory that the application is allowed to use and has the
worst performance overhead in our previous measurements
[34]. The buffer out is merely the time required to transfer
files from the proxy to the clients and thus is very small
that can barely be seen from the figure.

To see how varying the cache size affects the overhead
added by BRSS on the applet files, we logged each
transaction for applet file quest on the client side. The time
measured thus is the mean value of both cache miss and
cache hit. Figure 7b compares the result with and without
BRSS under different cache sizes. The PRR used is 30
xacts/sec. We can see that with the cache size increases
and so the number of cached rewritten applet files and
cache hits increases, the mean response time difference
between with and without BRSS is decreasing, which
means the overhead caused by BRSS as shown in Figure
7a is amortized by the increased cache hits.

2,000

2,500

3,000

3,500

4,000

4,500

5,000

With BRSS Without BRSS
peak request rate (xact/sec)

m
e
an

 ti
m

e
 (m

se
c)

buffer out

rew riting

buffer in

(a) Time measured at the proxy (with 16G cache)

0

2

4

6

8

10

1G 2G 4G 8G 16G
cache size (bytes)

ap
p

le
t
m

ea
n

 r
es

p
o
n
se

 t
im

e(
se

c)

no BRSS

with BRSS

(b) Mean response time under different cache size
Figure 7 Overhead added by BRSS on applet file

request (PRR 30 xacts/sec)

4.4.2 The Overall performance. To find out how BRSS
affects the proxy’s overall performance, we compared the
proxy’s performance with and without BRSS under
different PRRs that the proxy server becomes from lightly
loaded to badly overloaded. The result is shown in Figure
8. As the PRR increases, the mean response time and
throughput increases. After the 30 xacts/sec, the proxy
becomes overloaded: The response time increases
dramatically; The concurrent level increases while the

 8

throughput tends to be stabilized at 40 xacts/sec, which
means client requests keep queued at the proxy; The error
rate rises up to be over 1% and over 90% of the errors are
caused by connection time out; The CPU usage tends to be
stable at 12%. We can see that except a little overhead on
the server’s CPU usage (which is less than 1%) can be
perceived constantly, the performance difference between
with and without BRSS is very small and within the
measurement error range.

0

2

4

6

8

10

12

20 30 40 50
offered peak request rate (xact/sec)

tim
e

(s
ec

s)

no BRSS
w ith BRSS

(a) Mean response time

0

10

20

30

40

50

20 30 40 50
offered peak request rate (xact/sec)

m
ea

su
re

d
 th

ro
ug

hp
ut

(x
a

ct
/s

e
c) no-BRSS

with-BRSS

(b) Throughput

0

100

200

300

400

500

20 30 40 50
offered peak request rate (xacts/secs)

co
nc

ur
re

nt
 c

on
ne

ct
io

ns

no BRSS

w ith BRSS

 (c) Concurrent level

0

0.3

0.6

0.9

1.2

1.5

1.8

20 30 40 50
offered peak request rate (xact/sec)

er
ro

r
ra

te
 (

%
)

no BRSS

w ith BRSS

 (d) Error ratio

0

3

6

9

12

15

20 30 40 50
offerred peak request rate(xact/sec)

cp
u

us
ag

e(
%

)

no BRSS

with BRSS

(e) CPU usage

0.95

0.96

0.97

0.98

0.99

1

20 30 40 50
offerred peak request rate (xact/sec)

m
em

 u
sa

g
e

 (
%

)

no BRSS
with BRSS

(f) Memory usage
Figure 8. Apache proxy performance under different

request rates (16G Cache Size)

In the above experiment we set the cache size to 16G

bytes. The reason is that under heavy load (e.g. 50
xacts/sec PRR) and at the same time with a small cache
(e.g., 1G), the Apache proxy’s behavior become very bad
and underterministic. This is consistent with Cao’s result
[29]. However, to testify that our above result is also
consistent with small cache, we give the overall
performance under 30 xact/sec PRR with 1G cache size as
shown in Figure 9. As we can see that with different size
of cache, the overall performance with and without BRSS
is still almost the same.

0

2

4

6

8

1G 16G
cache size (bytes)

m
ea

n
re

sp
on

se
 ti

m
e

(s
ec

s)

no BRSS

w ith BRSS

(a) Mean response time

 9

0

10

20

30

40

50

1G 16G
cache size (bytes)

th
ro

ug
hp

ut
 (
xa

ct
s/

se
c)

no BRSS

w ith BRSS

 (b) Throughput

Figure 9. Overall performance under 30 xacts/sec PRR

Therefore, to summarize it, BRSS almost has no impact

on the proxy’s overall performance under different
workloads and cache sizes. The overhead added specially
on JAVA applet requests can be amortized by increasing
cache size.

5. Related Work

Applet Trap[27] is a commercially available anti-virus
software. It wraps applets in security monitoring code
before the gateway server passes the applets on to the
requesting client computer. The applets run their original
code along with the monitoring wrapper which looks ahead
into the applets’ behavior to determine if the action applets
will take matches any behavior defined in the
administrators’ policy as malicious (such as reformatting
the hard disk). Different from many other content filtering
or blocking software, the execution of the monitoring code
doesn’ t need host system or external software support.
Although there is little material available about how
AppletTrap rewrites the JAVA applet code, we suspect
that AppletTrap can only add checking code to block the
predefined malicious instructions while BRSS enforces
more comprehensive security policies.

 WiSA (Wisconsin Safety Analyzer) [26] is an on-going
project that aims at developing analysis techniques
especially suited for COTS components. The General
Purpose Binary rewriter is one of its subtopics. Its goal is
to provide a flexible and extendable general infrastructure
that utilizes existing binary rewriting and analyzing tools
such as EEL and codesurfer, and works across different
platform, architectures and languages. Their work will be
greatly beneficial to our prototype. However, to bring all
of them into one data structure is a great challenge.

M. Arlitt and C. Williamson [28] did a comprehensive
workload characterization study of a World-Wide Web
proxy. We followed the similar method in our analysis of
JAVA applet file traffic. WPB (Wisconsin Proxy
Benchmark) [29] is another caching proxy benchmark tool
that is similar to Web Polygraph. WPB also uses synthetic
clients and server processes. The workload is generated by

reproducing the workload characteristics found in web
proxy traces. The main performance data collected by the
benchmark are latency, proxy hit ratio and byte hit ratio,
and number of client errors. However, it can not generate
real content traffic as Web Polygraph does, which makes it
impossible for content filtering types of performance
evaluation.

6. Conclusion

In this paper, we presented BRSS, a binary rewriting
security system for mobile code. BRSS integrates binary
rewriting with proxy caching techniques. It provides
efficient support and management for binary rewriters and
mobile code. In addition, in this research we also
developed a unique methodology for our performance
evaluation section. We first performed a study specifically
on JAVA applet file Internet traffic characteristics. This is
the first time, to our knowledge, that this kind of study has
been conducted while most previous work has focused on
the overall Internet traffic. We employed the Web
Polygraph as our performance benchmark, but customized
it to fit our requirement for real content filtering type tests.
We verified through comprehensive experiments that
adding BRSS into the proxy server almost has no impact
on the overall proxy performance and the overhead added
by BRSS on applet files is amortized as more requests are
satisfied by proxy cache.

Acknowledgements

We would like to thank Fred Schneider and Cornell
University for allowing us to user PoET for this research.
We would like to thank Alex Rousskov from the
Measurement Factory for his generous help on our
experimental setup. We would also like to thank Duane
Wessels from IRCache for allowing us to access the daily
raw access log.

References

[1] J. Feigenbaum, P. Lee, Trust Management and Proof-

Carrying Code in Secure Mobile-Code Applications,
DARPA Workshop on Foundations for Secure Mobile
Code in Monterey, CA, March, 1997.

[2] Roshan Thomas, A Survey of Mobile Code Security
Techniques, 22nd National Information Systems
Security Conference, Oct, 1999

[3] Greg Andrews, Link-Time Optimization of Parallel
Scientific Programs, University of Arizona Seminar
Abstract, Nov, 2002.

[4] S. Debray, W. Evans, R. Muth, B. D. Sutter, Compiler
Techniques for Code Compaction, ACM Transactions

 10

on Programming Languages and Systems. ACM Press.
Vol. 22 (2). 2000. pp. 378-415

[5] F. B. Schneider, etc, A Language-Based Approach to
Security, Informatics, 2001, pp. 86-101.

[6] U. Erlingsson, F. B. Schneider, IRM Enforcement of
JAVA Stack Inspection, IEEE Symposium on Security
and Privacy, Oakland, California, May 2000.

[7] M. Gasser, Building a Secure Computer System, Van
Nostrand Reinhold International Company Limited,
April, 1988, pp. 162-166, pp. 93-127.

[8] Secure Computing with JAVA: Now and the Future:
http://java.sun.com/marketing/collateral/security.html.

 [9] C. Cifuentes, M. Emmerik, UQBT: Adaptable Binary
Translation at Low Cost, Computer, Vol 33, No 3,
March 2000, IEEE Computer Society Press, pp 60-66

[10] T. Romer, et al., Instrumentation and Optimization of
Win32/Intel Executables Using Etch. Proceedings of the
First USENIX Windows NT Workshop, Seattle, WA,
August 1997.

 [11] Byte Code Engineering Library (BCEL) http://jakarta.
Apache.org/bcel /manual.html

[12] A. Srivastava and A. Eustace, ATOM: A system for
building customized program analysis tools,
Proceedings of the SIGPLAN ‘94 Conference on
Programming Language Design and Implementation,
May 1994.

[13] L. R. James and E. Schnarr, EEL: Machine
independent executable editing, Proceedings of the
SIGPLAN ‘95 Conference on Programming Language
Design and Implementation, June 1995.

[14] T. Chiueh and F. Hsu. Rad: A compile-time solution
to buffer overflow attacks, 21st International
Conference on Distributed Computing, Phoenix,
Arizona, April 2001, pp 409.

[15] M. Prasad and T. Chiueh, A Binary Rewriting
Defense Against Stack-based Buffer Overflow Attacks,
Proceedings of Usenix Annual Technical Conference,
San Antonio, TX, June 2003

[16] B. Buck and J. K. Hllingsworth, An API for runtime
code patching, the International Journal of High
Performance Computing Applications, vol. 14, no. 4,
2000, pp. 317-329.

[17] Libsafe library: http://www.bell-labs.com/org/11356/
libsafe.html.

[18] C. Cowan et al., Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,
Proceedings of the 7th USENIX Security Symposium,
San Antonio, TX, January 1998, pp 63-78.

[19] M. Arlitt and C. Williamson, Internet Web Servers:
Workload Characterization and Performance
Implications, IEEE/ACM Transactions on Networking ,
Vol. 5, No. 5, October 1997, pp. 631-645.

[20] A. Mahanti and C. Williamson, Web Proxy Workload
Characterization, Progress Report, Computer Sciences
Dept, Univ. of Saskatchewan, Feb. 1999

 [21] D. C. DuVarney, V.N. Venkatakrishnan and S.
Bhatkar, SELF: a Transparent Security Extension for
ELF Binaries, New Security Paradigms Workshop,
Ascona, Switzerland, August 2003.

[22] D. Evans and A. Twyman, Flexible Policy-Directed
Code Safety, 1999 IEEE Symposium on Security and
Privacy, Oakland, California, May 9-12, 1999.

[23] Ú. Erlingsson and F. B. Schneider, SASI enforcement
of security policies: A retrospective, Proceedings of
the New Security Paradigms Workshop, Ontario,
Canada, September 1999, pp87-95.

[24] R. Wahbe, et al., Efficient Software-Based Fault
Isolation, Proceedings of the Symposium on Operation
System Principles, 1993.

[25] R. Hastings and B. Joyce, Purify: A tool for detecting
memory leaks and access errors in C and C++
programs, Proceedings of the Winter 1992 USENIX
Conference, Berkeley, CA, January 1992, pp 125–138.

[26] Wisconsin Safety Analyzer (WiSA): www.cs.wisc.
edu/wisa/

[27] AppletTrap: www.trendmicro.com.au/product/ isap/
[28] M. Arlitt, etc., Workload Characterization of a Web

Proxy in a Cable Modem Environment, ACM
SIGMETRICS Performance Evaluation Review, Vol.
27, No. 2, September 1999, pp. 25-36.

[29] J. Almeida and P. Cao. Measuring Proxy Performance
with the Wisconsin Proxy Benchmark, Technical
Report 1373, Computer Sciences Dept, Univ. of
Wisconsin-Madison, April 1998.

[30] Squid Document. http://www.squid-cache.org/
[31] Web Polygraph: http://www.web-Polygraph. org
[32] The Mesurement Factory Document about server

workload file size. http://www.measurement-
factory.com/docs/FAQ/pmix4-reply-size-distr/

[33] IRCache Project: http://www.ircache.net/
[34] Y. Song and B. D. Fleisch, Rico: A Security Proxy for

Mobile Code, Journal of Computers and Security
Elsevier Advanced Technology, Elsevier Press,
Volume 23, Issue 4, 2004, pp. 338-351

[35] Y. Song and B. D. Fleisch, Sandboxing Mobile Code
from Outside the OS, in the 19th ACM Symposium on
Operating Systems Principles, Work in Progress
Session, Bolton Landing, New York, 2003.

[37] Apache Web Proxy: http://httpd.Apache.org/docs-2.0/
[40] The Fourth TMF Cache-Off: http://cacheoff.measure

ment -factory.com/

List of Written Publications
(UC Irvine)

Peer-Reviewed Book Chapters

• M. Franz; “A Fresh Look At Low-Power Mobile Computing”; in L. Benini,
M. Kandemir, J. Ramanujam (Eds.),Compilers and Operating Systems for
Low Power; Kluwer Academic Publishers, Boston, ISBN 1-4020-7573-1,
pp. 209-220; September 2003.

• M. Franz; “Safe Code—It’s Not Just For Applets Anymore”; in L. Boes-
zoermenyi and P. Schojer (Eds.),Modular Programming Languages: Pro-
ceedings of the Sixth Joint Modular Languages Conference (JMLC 2003),
Klagenfurt, Austria; Springer Lecture Notes in Computer Science, No. 2789,
ISBN 3-540-40796-0; pp. 12-22; August 2003. (Full Text of Invited Keynote
Address)

Peer-Reviewed Journal Papers

• M. Franz, D. Chandra, A. Gal, V. Haldar, Ch. W. Probst, F. Reig, and
N. Wang; “A Portable Virtual Machine Target For Proof-Carrying Code”;
Science of Computer Programming, Special Issue on Interpreters, Virtual
Machines, and Emulators; accepted for publication.

Rigorously Peer-Reviewed Conference Papers

• A. Gal, Ch. W. Probst, and M. Franz; “Structural Encoding of Static Single
Assignment Form”; to appear in4th International Workshop on Compiler
Optimization Meets Compiler Verification (COCV’05), Edinburgh, Scotland;
April 2005.

• A. Gal, Ch. W. Probst, and M. Franz; “Integrated Java Bytecode Verifica-
tion”; in 1st International Workshop on Abstract Interpretation of Object-
Oriented Programming Languages (AIOOL’05), Paris, France; January
2005.

• J. von Ronne, N. Wang, and M. Franz; “A Virtual Machine for Interpreting
Programs in Static Single Assignment Form”; inProceedings of the ACM
SIGPLAN 2004 Workshop on Interpreters, Virtual Machines and Emulators
(IVME’04), Washington, D.C., pp. 23-30; June 2004.

54

• M. Beers, Ch. Stork, and M. Franz; “Efficiently Verifiable Escape Analysis”;
in M. Odersky (Ed.),Proceedings of the 18th European Conference on
Object-Oriented Programming (ECOOP 2004), Oslo, Norway, Springer
Lecture Notes in Computer Science, Vol. 3086, ISBN 3-540-22159-X,
pp. 75-95; June 2004.

• V. Haldar, D. Chandra, and M. Franz; “Semantic Remote Attestation: A
Virtual Machine Directed Approach to Trusted Computing”; inProceedings
of the 3rd USENIX Virtual Machine Research & Technology Symposium
(VM’04), San Jose, California, ISBN 1-931971-20-X, pp. 29-41; May 2004.
(Best Paper Award)

• Ch. W. Probst, A. Gal, and M. Franz; “Code Generating Routers: A
Network-Centric Approach to Mobile Code”; inProceedings of the 2003
IEEE 18th Annual Workshop on Computer Communications (CCW’2003),
Dana Point, California, IEEE Press, ISBN 0-7803-8239-0, pp. 179-186;
October 2003.

• M. Franz, D. Chandra, A. Gal, V. Haldar, F. Reig, and N. Wang; “A
Portable Virtual Machine Target For Proof-Carrying Code”; inProceedings
of the ACM SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and
Emulators (IVME’03), San Diego, California, pp. 24-31; June 2003.

• V. Haldar, Ch. Stork, and M. Franz; “The Source Is The Proof”; in C. Serban,
S. Saydjari (Eds.), inProceedings of the ACM SIGSAC 2002 Workshop
on New Security Paradigms (NSPW-2002), Virginia Beach, Virginia, ACM
Press, ISBN 1-58113-598-X, pp. 69-73; September 2002.

• D. Chandra, Ch. Fensch, W.-K. Hong, L. Wang, E. Yardimci, and M. Franz;
“Code Generation at the Proxy: An Infrastructure-Based Approach to
Ubiquitous Mobile Code”; inProceedings of the Fifth ECOOP Workshop
on Object-Orientation and Operating Systems (ECOOP-OOOSWS 2002),
Malaga, Spain, June 2002.

• M. Franz; “A Fresh Look At Low-Power Mobile Computing”; inProceed-
ings of the Workshop on Compilers and Operating Systems for Low Power
2001 (COLP’01), Barcelona, Spain, pp. 15.1-15.6; September 2001.

Further Conferences, Workshops, and Technical Reports

• A. Gal, Ch. W. Probst, and M. Franz;SSA-Based Java Bytecode Verification;
Technical Report No. 04-22, School of Information and Computer Science,
University of California, Irvine; October 2004.

55

• A. Gal, Ch. W. Probst, and M. Franz;Proofing: Efficient SSA-based
Java Verification; Technical Report No. 04-10, School of Information and
Computer Science, University of California, Irvine; April 2004.

• A. Gal, Ch. W. Probst, and M. Franz;Complexity-Based Denial of Service
Attacks on Mobile-Code Systems; Technical Report No. 04-09, School of
Information and Computer Science, University of California, Irvine; April
2004.

• A. Gal, Ch. W. Probst, and M. Franz;Static Closure of Java Dynamic Class
Loading; Technical Report No. 03-32, School of Information and Computer
Science, University of California, Irvine; September 2003.

• N. Wang and M. Franz;A Practical Mobile-Code Format With Linear
Verification Effort; Technical Report No. 03-26, School of Information and
Computer Science, University of California, Irvine; November 2003.

• N. Wang, P. S. Housel, G. Zhang, and M. Franz;An Efficient XML Schema
Typing System; Technical Report No. 03-25, School of Information and
Computer Science, University of California, Irvine; November 2003.

• A. Gal, Ch. W. Probst, and M. Franz;Proofing: An Efficient and Safe
Alternative to Mobile-Code Verification; Technical Report No. 03-24, School
of Information and Computer Science, University of California, Irvine;
November 2003.

• A. Gal, Ch. W. Probst, and M. Franz;A Denial of Service Attack on the Java
Bytecode Verifier; Technical Report No. 03-23, School of Information and
Computer Science, University of California, Irvine; October 2003.

• V. Haldar, Ch. W. Probst, V. Venkatachalam, and M. Franz;Virtual Machine
Driven Dynamic Voltage Scaling; Technical Report No. 03-21, School of
Information and Computer Science, University of California, Irvine; October
2003.

• R. E. Diaconescu, L. Wang, and M. Franz;Automatic Distribution of Java
Byte-Code Based on Dependence Analysis; Technical Report No. 03-18,
School of Information and Computer Science, University of California,
Irvine; October 2003.

• V. Venkatachalam, L. Wang, A. Gal, Ch. Probst, and M. Franz;ProxyVM:
A Network-based Compilation Scheme for Resource-Constrained Devices;
Technical Report No. 03-13, School of Information and Computer Science,
University of California, Irvine; March 2003.

56

• N. Wang, M. Franz, and N. Dalton;Enabling Efficient Program Analysis
for Dynamic Optimization of a Family of Safe Mobile Code Formats;
Technical Report No. 02-24, Department of Information and Computer
Science, University of California, Irvine; September 2002.

57

Professional Personnel Associated With The Project
(UC Irvine)

Faculty

• Michael Franz

Post-Doctoral Researchers

• Roxana Diaconescu

• Won-Kee Hong

• Christian W. Probst

• Fermin Reig

Graduate Students

• Andreas Gal

• Matthew Beers

• Deepak Chandra

• Niall Dalton

• Christian Fensch

• Cristian Petrescu Prahova

• Vivek Haldar

• Songmei Han

• Jeffrey von Ronne

• Christian Stork

• Lei Wang

• Ning Wang

• Efe Yardimci

58

Visiting Researchers

• Bryan Fulton

59

Presentations at Meetings, Conferences, Seminars, etc.
(UC Irvine)

• A. Gal; 1st International Workshop on Abstract Interpretation of Object-
Oriented Programming Languages (AIOOL’05), Paris, France; January
2005.

• J. von Ronne; ACM SIGPLAN 2004 Workshop on Interpreters, Virtual
Machines and Emulators (IVME’04), Washington, D.C.; June 2004.

• Ch. Stork; 18th European Conference on Object-Oriented Programming
(ECOOP 2004), Oslo, Norway; June 2004.

• M. Franz; Sun Microsystems, Inc., Mountain View, California; May 2004.

• M. Franz; Southern California Parallel Processing and Computer Architec-
ture Workshop, Los Angeles, California; May 2004.

• V. Venkatachalam; Southern California Parallel Processing and Computer
Architecture Workshop, Los Angeles, California; May 2004.

• R. Diaconescu; Southern California Parallel Processing and Computer
Architecture Workshop, Los Angeles, California; May 2004.

• M. Franz; ONR Critical Infrastructure Protection, Mobile Code Program
Review Meeting, Annapolis, Maryland; May 2004.

• Ch. W. Probst; ONR Critical Infrastructure Protection, Mobile Code Pro-
gram Review Meeting, Annapolis, Maryland; May 2004.

• V. Venkatachalam; ONR Critical Infrastructure Protection, Mobile Code
Program Review Meeting, Annapolis, Maryland; May 2004.

• V. Haldar; 3rd USENIX Virtual Machine Research & Technology Sympo-
sium (VM’04), San Jose, California; May 2004.

• M. Franz; IFIP WG2.4 Working Meeting, Brisbane, Australia; March 2004.

• M. Franz; Google, Inc., Mountan View, California; December 2003.

• M. Franz; Transmeta, Inc., Santa Clara, California; December 2003.

• Ch. W. Probst; 2003 IEEE 18th Annual Workshop on Computer Communi-
cations (CCW’2003), Dana Point, California; October 2003.

60

• M. Franz; IFIP WG2.4 Working Meeting, Santa Cruz, California, August
2003.

• M. Franz; “Safe Code: It’s Not Just For Applets Anymore” (invited talk);
Sixth Joint Modular Languages Conference (JMLC 2003), Klagenfurt,
Austria; August 2003.

• M. Franz; ONR Critical Infrastructure Protection, Mobile Code Program PI
Meeting, Ithaca, New York; July 2003.

• M. Franz; ONR Critical Infrastructure Protection, Mobile Code Program PI
Meeting, Arlington, Virginia; June 2003.

• D. Chandra; ACM SIGPLAN 2003 Workshop on Interpreters, Virtual
Machines and Emulators (IVME’03), San Diego, California; June 2003.

• M. Franz; 20th Gesellschaft fr Informatik (GI) Workshop on Programming
Languages and Computing Concepts, Bad Honnef, Germany; May 2003.

• M. Franz; ONR Critical Infrastructure Protection, Mobile Code Program PI
Meeting, Irvine, California; January 2003.

• Ch. Fensch; 10th Workshop on Compilers for Parallel Computers (CPC
2003), Amsterdam, Netherlands; December 2002.

• E. Yardimci; 10th Workshop on Compilers for Parallel Computers (CPC
2003), Amsterdam, Netherlands; December 2002.

• M. Franz; IFIP WG2.4 Working Meeting, Dagstuhl, Germany; November
2002.

• V. Haldar; ACM SIGSAC 2002 Workshop on New Security Paradigms
(NSPW-2002), Virginia Beach, Virginia; September 2002.

• D. Chandra; Fifth ECOOP Workshop on Object-Orientation and Operating
Systems (ECOOP-OOOSWS 2002), Malaga, Spain; June 2002.

• M. Franz; 2nd Workshop on Intermediate Representation Engineering for
Virtual Machines (IRE 2002), Dublin, Ireland; June 2002.

• M. Franz; ONR Critical Infrastructure Protection, Mobile Code Program PI
Meeting, State College, Pennsylvania; July 2002.

• M. Franz; 19th Gesellschaft fr Informatik (GI) Workshop on Programming
Languages and Computing Concepts, Bad Honnef, Germany; May 2002.

61

• M. Franz; IFIP WG2.4 Working Meeting, Simon’s Town, South Africa;
March 2002.

• M. Franz; Southern California Parallel Processing and Computer Architec-
ture Workshop, Irvine, California; February 2002.

• M. Franz; ONR Critical Infrastructure Protection, Mobile Code Program PI
Meeting, Melbourne, Florida; January 2002.

• M. Franz; Workshop on Compilers and Operating Systems for Low Power
2001 (COLP’01), Barcelona, Spain; September 2001.

• M. Franz; ONR Critical Infrastructure Protection, Mobile Code Program PI
Meeting, Arlington, Virginia; July 2001.

62

References Cited

References

[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting Equality of Values
in Programs. InProceedings of the 15th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL), pages 1–11, San Diego,
California, January 1988.

[2] W. Amme, N. Dalton, J. von Ronne, and M. Franz. SafeTSA: A type safe
and referentially secure mobile-code representation based on static single
assignment form. InProceedings of the ACM SIGPLAN ’01 Conference on
Programming Language Design and Implementation, pages 137–147, June
20–22, 2001.SIGPLAN Notices,36(5), May 2001.

[3] J. P. Anderson. Computer Security Threat Monitoring and Surveillance.
Technical report, James P Anderson Co., Fort Washington, PA, Apr. 1980.

[4] A. W. Appel. SSA is functional programming.ACM SIGPLAN Notices,
33(4):17–20, Apr. 1998.

[5] A. W. Appel and K. J. Supowit. Generalization of the sethi-ullman algorithm
for register allocation.Software - Practice and Experience, 17(6):417–421,
1987.

[6] G. Back, W. H. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation,
resource management, and sharing in java. InProceedings of the 4th
Symposium on Operating Systems Design and Implementation (OSDI-00),
pages 333–346, Berkeley, CA, Oct. 23–25 2000. The USENIX Association.

[7] D. F. Bacon. Fast and Effective Optimization of Statically Typed Object-
Oriented Languages. Technical Report CSD-98-1017, University of Califor-
nia, Berkeley, Oct. 5, 1998.

[8] D. Beuche, L. B̈uttner, D. Mahrenholz, W. Schröder-Preikschat, and F. Schön.
JPure - Purified Java Execution Environment for Controller Networks. In
Proceedings of the International IFIP WG 10.3/WG 10.5 Workshop on Dis-
tributed and Parallel Embedded Systems (DIPES’2000). Kluwer Academic
Press, Oct. 2001.

[9] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring
register allocation. ACM Transactions on Programming Languages and
Systems, 16(3):428–455, May 1994.

63

[10] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey.
A benchmark suite for high performance Java.Concurrency: Practice and
Experience, 12(6):375–388, May 2000.

[11] B. Bush, D. Simon, and A. Taivalsaari. The Spotless System: Implementing a
Java System for the Palm Connected Organizer. Technical Report TR-99-73,
Sun Microsystems, Feb. 1999.

[12] CERT Coordination Center, Carnegie Mellon University,
http://www.cert.org.

[13] G. J. Chaitin. Register allocation and spilling via graph coloring. In
Proceedings of the SIGPLAN 1982 Symposium on Compiler Construction
(CC), pages 98–105, Boston, MA, June 1982.

[14] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, Martin, E. Hopkins,
and P. W. Markstein. Register allocation via graph coloring.Computer
Languages, 6(1):47–57, 1981.

[15] R. M. Cohen. The defensive Java Virtual Machine specification version 0.5.
Technical report, Computational Logic, Inc., May 1997.

[16] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying
compiler for Java.ACM SIGPLAN Notices, 35(5):95–107, May 2000.

[17] M. Cooperation. Microsoft .NET.http://www.microsoft.com/
net/ , 2003.

[18] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph.ACM Transactions on Programming Languages and
Systems, 13(4):451–490, October 1991.

[19] G. Czajkowski and T. von Eicken. JRes: A resource accounting interface for
Java.ACM SIGPLAN Notices, 33(10):21–35, Oct. 1998.

[20] D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, 1999.

[21] D. Dean, E. W. Felten, D. S. Wallach, and D. Balfanz. Java security: Web
browsers and beyond. In D. E. Denning and P. J. Denning, editors,Internet
Besieged: Countering Cyberspace Scofflaws, pages 241–269. ACM Press /
Addison-Wesley, New York, 1998.

64

[22] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion
detection systems.Computer Networks, 31(8):805–822, Apr. 1999. Special
issue on Computer Network Security.

[23] B. Delsart, V. Joloboff, and E. Paire. JCOD: A Lightweight Modular
Compilation Technology for Embedded Java.Lecture Notes in Computer
Science, 2491, 2002.

[24] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard, and D. Tarditi. Mar-
mot: an optimizing compiler for Java.Software—Practice and Experience,
30(3):199–232, Mar. 2000.

[25] C. Fournet and A. D. Gordon. Stack inspection: theory and variants.ACM
SIGPLAN Notices, 37(1):307–318, Jan. 2002.

[26] M. Franz. A Fresh Look At Low-Power Mobile Computing. InProceedings
of the Workshop on Compilers and Operating Systems for Low Power
COLP’01, Sept. 2001.

[27] S. Freund and J. C. Mitchell. A formal specfication of the java bytecode
language and bytecode verifier. In L. Meissner, editor,Proceeings of the 1999
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA‘99), volume 34.10 ofACM Sigplan
Notices, pages 147–166, N. Y., 1–5 1999. ACM Press.

[28] S. N. Freund. The costs and benefits of java bytecode subroutines. In
Proceedings of the Formal Underpinnings of Java Workshop at OOPSLA,
oct 1998.

[29] S. N. Freund and J. C. Mitchell. The Type System for Object Initialization in
the Java Bytecode Language.ACM Transactions on Programming Languages
and Systems, 21(6):1196–1250, 1999.

[30] A. Gal, C. W. Probst, and M. Franz. An Applet performing a complexty-
based Denial-of-Service attack on the verifier. Available athttp://nil.
ics.uci.edu/exploit .

[31] A. Gal, C. W. Probst, and M. Franz. A Denial of Service Attack on the Java
Bytecode Verifier. Technical Report 03-23, University of California, Irvine,
School of Information and Computer Science, 2003.

[32] A. Gal, C. W. Probst, and M. Franz. Proofing: An Efficient and Safe Alter-
native to Mobile-Code Verification. Technical Report 03-24, University of

65

California, Irvine, School of Information and Computer Science, November
2003.

[33] A. Gal, C. W. Probst, and M. Franz. Proofing: Efficient SSA-based Java
Verification. Technical Report 04-10, University of California, Irvine, School
of Information and Computer Science, April 2004.

[34] L. George and A. W. Appel. Iterated register coalescing.ACM Transactions
on Programming Languages and Systems, 18(3):300–324, May 1996.

[35] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-
Wesley, 1996.

[36] S. Govindavajhala and A. W. Appel. Using memory errors to attack a virtual
machine. InProceedings of the 2003 Symposium on Security and Privacy,
pages 154–165, Los Alamitos, CA, May 11–14 2003. IEEE Computer
Society.

[37] C. Hawblitzel and T. von Eicken. Luna: A flexible java protection system.
In Proceedings of the 5th ACM Symposium on Operating System Design and
Implementation (OSDI-02), Operating Systems Review, pages 391–403, New
York, Dec. 9–11 2002. ACM Press.

[38] J. Hennessy and T. Gross. Postpass code optimization of pipeline constraints.
ACM Transactions on Programming Languages and Systems, 5(3):422–448,
July 1983.

[39] D. Hopwood. Java Security Bug (Applets Can Load Native Methods).RISKS
Forum, 17(83), 1996.

[40] Insignia Solutions. Jeode Platform: Java for Resource-constrained Devices,
2000. http://www.javaworld.com/javaworld/javaone00/j1-00-insignia.html.

[41] The Java Hotspot Virtual Machine, Technical White Paper, Sun Microsys-
tems, Inc. 2001.

[42] JavaME Test Suite - Performance Discovery.
http://www.dogada.com/javame.

[43] R. A. Kelsey. A correspondence between continuation passing style and static
single assignment form.ACM SIGPLAN Notices, 30(3):13–22, Mar. 1995.

[44] C. League, V. Trifonov, and Z. Shao. Functional Java Bytecode. InProc.
5th World Conf. on Systemics, Cybernetics, and Informatics, July 2001.

66

Workshop on Intermediate Representation Engineering for the Java Virtual
Machine.

[45] S. Lelait, G. R. Gao, and C. Eisenbeis. A New Fast Algorithm for Optimal
Register Allocation in Modulo Scheduled Loops. In K. Koskimies, editor,
Proceedings of the 7th International Conference on Compiler Construction
(CC’98), volume 1383, pages 204–218, Lisbon, Portugal, March 28 - April 4
1998. Springer.

[46] X. Leroy. Bytecode verification on java smart cards.Software Practice and
Experience, 32(4):319–340, 2002.

[47] X. Leroy. Java Bytecode Verification: Algorithms and Formalizations.
Journal of Automated Reasoning, 30(3/4):235–269, 2003.

[48] T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison-
Wesley, 1996.

[49] G. McGraw and E. Felten.Securing Java: Getting Down to Business with
Mobile Code. John Wiley and Sons, New York, NY, USA; London, UK;
Sydney, Australia, 1998.

[50] E. Meijer and J. Gough. Technical Overview of the Common Lan-
guage Runtime.http://research.microsoft.com/˜emeijer/
papers/clr.pdf , 2001.

[51] Microsoft Corporation. Microsoft Security Program: Microsoft Security Bul-
letin (MS99-045): Patch Available ”Virtual Machine Verifier” Vulnerability,
1999.

[52] S. Microsystems.KVM - Kilobyte Virtual Machine White Paper.http://
java.sun.com/products/kvm/wp/ . Palo Alto, CA, USA, 1999.

[53] G. C. Necula. Proof-carrying code. InProceedings of the 24th ACM
Symposium on Principles of Programming Languages, Paris, France, Jan.
1997.

[54] G. C. Necula. Proof-Carrying Code. InProceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 106–119, Paris, France, January 1997.

[55] R. O’Callahan. A Simple, Comprehensive Type System for Java Bytecode
Subroutines. InProceedings of the 26th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL), pages 70–78, San Antonio,
Texas, 1999.

67

[56] M. Poletto and V. Sarkar. Linear scan register allocation.ACM Transactions
on Programming Languages and Systems, 21(5):895–913, 1999.

[57] Z. Qian. A Formal Specification of Java Virtual Machine Instructions for
Objects, Methods and Subrountines. InFormal Syntax and Semantics of Java,
pages 271–312, 1999.

[58] Z. Qian. Standard Fixpoint Iteration for Java Bytecode Verification.ACM
Transactions on Programming Languages and Systems, 22(4):638–672,
2000.

[59] Redhat. Vulnerability in zlib library, Advisory ID: RHSA-2002:026-35,
2002.

[60] E. Rose and K. H. Rose. Lightweight Bytecode Verification. InOOPSLA-
Workshop on the Formal Underpinnings of the Java Paradigm, 1998.

[61] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbering
and Redundant Computations. InProceedings of the 15th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL), pages 12–17,
San Diego, California, January 1988.

[62] K. Sohr. Nicht verifizierter Code: eine Sicherheitslücke in Java.JIT 1999,
1999.

[63] K. Sohr. Die Sicherheitsaspekte von mobilem Code. PhD thesis, Universität
Marburg, 2001.

[64] S. Soman, C. Krintz, and G. Vigna. Detecting malicious java code using
virtual machine auditing. InProceedings of the 11th USENIX Security
Symposium, pages 153–168. USENIX, Aug. 2003.

[65] SPEC. JVM98 Benchmarks.http://www.spec.org/jvm98 , 2001.

[66] V. C. Sreedhar and G. R. Gao. A Linear Time Algorithm for Placingφ-
nodes. InProceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 62–73, San Francisco,
California, 1995.

[67] R. Sẗark, J. Schmid, and E. B̈orger. Java and the Java Virtual Machine:
Definition, Verification, Validation. Springer-Verlag, 2001.

[68] R. Stata and M. Abadi. A type system for Java bytecode subroutines.ACM
Transactions on Programming Languages and Systems, 21(1):90–137, 1999.

68

[69] Sun Microsystems. J2SE: Java 2 Platform, Standard Edition (J2SE).
http://java.sun.com/j2se/.

[70] Sun Microsystems. JSR-000139 Connected Limited Device Configuration
1.1.http://www.jcp.org/en/jsr/detail?id=139 .

[71] Sun Microsystems. CDC: An Application Framework for Personal Mobile
Devices, http://java.sun.com/products/cdc/, 2003.

[72] Sun Microsystems Inc. Connected, Limited Device Configuration, and the K
Virtual Machine, April 2000.

[73] Sun Microsystems, Inc. Java Card 2.2.1 Specification, Public Review Draft,
2003. http://java.sun.com/products/javacard/JavaCard221.html.

[74] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.
Minden. A Survey of Active Network Research.IEEE Communications
Magazine, 35(1):80–86, 1997.

[75] F. Tip and J. Palsberg. Scalable Propagation-Based Call Graph Construction
Algorithms. ACM SIGPLAN Notices, 35(10):281–293, Oct. 2000.

[76] V. Venkatachalam, L. Wang, A. Gal, C. W. Probst, and M. Franz. ProxyVM:
A Network-based Compilation Infrastructure for Resource-Constrained De-
vices. Technical Report 03-13, University of California, Irvine, School of
Information and Computer Science, 2003.

[77] D. J. Wetherall. Service introduction in an active network. PhD thesis,
Massachusetts Institute of Technology, Dept. of Electrical Engineering and
Computer Science, 1998.

[78] F. Yellin. Low level security in Java. In O’Reilly and Associates and
Web Consortium (W3C), editors,World Wide Web Journal: The Fourth
International WWW Conference Proceedings, pages 369–380. O’Reilly &
Associates, Inc., 1995.

69

